

HIGHEST FLEXIBILITY

RUBBER EXPANSION JOINTS

PENETRATION SEALS

DOG BONE EXPANSION JOINTS

RUBBER MOULDED PARTS

FABRIC EXPANSION JOINTS

Content

Company Portrait	> 6
Product Overview	> 18
Rubber Expansion Joints	> 25
Technical information	> 27
Universal rubber expansion joints	> 61
Lateral rubber expansion joints	> 199
Angular rubber expansion joints	> 279
Appendix	> 295
Penetration Seals	> 303
High pressure ground water seals	> 304
Low pressure air-tight membranes	> 312
Fire penetration seals	> 316
Dog Bone Expansion Joints	> 335
Rubber Moulded Parts	> 339
Disc bellows	> 340
Vulcanized rubber gaskets	> 342
Custom moulded rubber products	> 344
Fabric Expansion Joints	> 351
Technical information	> 353
Flange expansion joints	> 365
Belt expansion joints	> 371
Expansion joints for smoke escape, ventilation and EX protection zones	> 387

Your Partner - ditec Dichtungstechnik GmbH

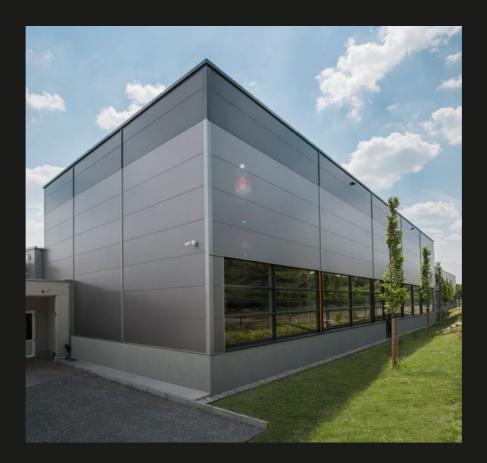
Through specialisation, our company has positioned itself as a worldwide leading manufacturer of rubber and textile expansion joints. As a developer and manufacturer, we focus on our customers' demands. We make the seemingly impossible possible – with a high degree of technical expertise and commitment, combined with decades of experience. We rise to every challenge.

In our state-of-the-art production plant in Kitzingen, we produce tailor-made solutions and serial items. Each expansion joint is individually designed and its tolerance is precisely calculated with reference to the Pressure Equipment Directive. Even when the specific requirements in terms of operating parameters vary only slightly, it is only by taking these into account accurately that a long service life and failure-free use of your expansion joint solution can be guaranteed.

Just describe your needs to us, and we will provide you with personalised advice. With your project team, we develop an efficient solution for you - both in the field of standard devices and for special applications - with our characteristic combination of know-how, innovation and flexibility.

You can rely on your order to be processed rapidly and on schedule – even if it is urgent. We provide support not only as a supplier, but also as problem solvers.

This catalogue provides you with an overview of our product range and an invaluable base of technical details and planning tools.


Innovation - made in Germany

On a site extending to 17,600 m², we produce all expansion joints in the same place where we develop them. Our commitment to our German production location forms the core of our philosophy, which privileges the very highest quality above all else. Thanks to the high degree of vertical integration in our own product plant, we achieve highly efficient production processes.

Our design of models puts us in a position to respond rapidly to orders at extremely short notice, and to produce single pieces as well.

We have our own calendar plant and our own appropriately dimensioned vulcanisation plants. A metalworking company directly integrated in the production plant manufactures all the steel accessories we require. This concentration in a single location is evident: we are able to make all the essential components in-house and are therefore largely independent of vendors.

High-tech all along the line

Founded in 1973, we at ditec have been on a growth course ever since and today convince worldwide as a high-tech company with quality products. Then as now, we rely on our values, which make us an internationally active manufacturer: partnership, safety and individuality are attributes for ditec, which are lived from development to the finished product. Together with you as our customer, we develop more than products, we create solutions – for every application, every industry and every problem.

Service

Our engineers possess in-depth knowledge of rubber and fabric materials and can provide industrial planners, designers and partners not just with products, but also with consulting services and individual technologies. Our performance and our success are based on the courage to provide solutions for the most extreme specifications.

Ask our employees about your new developments for elastic components! We advise you on the basis of innovative thinking and engineering services; we manufacture our products in keeping with certified quality guidelines that can help you turn your ideas into reality.

Our highly efficient manufacturing process for expansion joints addresses the following demands on the market:

- > abnormal dimensions,
- > high temperatures,
- > corrosive media and
- > large movements

Calculation is performed individually based on the operating conditions present. Internal dimension, installation length, shape and flange dimensions can be selected freely for both round and rectangular rubber and fabric expansion joints.

Our rubber expansion joint designs always comply with the European Pressure Equipment Directive PED 2014/68/EU for the specified operating conditions,

follow the guidelines of the Fluid Sealing Association (FSA) Technical Handbook for Non-Metallic Expansion Joints and ASTM F1123 - 87 Standard Specification for Non-Metallic Expansion Joints.

The selection and application of expansion joints plays a significant role in system performance, quality and reliability. Leveraging our extensive industry experience since 1973, ditec uses a systematic approach to finding the optimal solutions for any piping system. We apply the most sophisticated analysis and calculation software tools such as Finite Element Analysis (FEA), 3D Modelling and CAD to select the most appropriate expansion joint to fit into the corresponding pipeline system.

Already during the preparation of our offers the project engineering team design each rubber expansion joint to the maximum final extend and check with our unique 3D modelling software programme dimensional irregularities prior release. The ready 3D model is handed out to our clients already during the engineering phase to include the rubber expansion joint in its own pipeline design. At your request, we will inspect the expansion joints installed in your facilities with respect to functionality and operational safety.

Our optimally equipped installation team will provide complete installation services for new construction or retrofitting activities; we can also appoint a field supervisor to train your workers and to support and monitor installation activities. Our technicians and installers are also authorised to access nuclear facilities, and can perform on-site project planning and assembly work.

We have trained representatives in almost all European countries as well as in many non-European countries who can provide you with expert on-site advice.

The purpose of this publication is to provide a reference source of pertinent information and factual data as well as a guideline for piping engineers to specify expansion joints for their purchase joints.

Certifications

The focus on quality has always been a central part of the ditec's mission. We strive to provide services of consistently high quality that fully meet the expectations of our customers. Implementation and adherence to recognized quality assurance systems ensures that all processes have been accurately performed – starting from the initial review of the submitted specifications to their design, manufacturing, testing and documentation in accordance with the customers' requirements. The accreditations and certificates we possess enable us to shorten lead times and optimize resources by performing testing and inspection procedures in-house.

Our quality management system in accordance with DIN EN ISO 9001 successfully passed an audit performed by TÜV Management Service GmbH in 1998. Since June 2008, our company has introduced an occupational health and safety management system which complies today the ISO 45001:2018 regulation.

We possess a KTA 1401 certification and are an authorised supplier for Nuclear Power Plants. All rubber expansion joints are calculated in keeping with Pressure Equipment Directive PED 2014/68/EU; we are CEcertified up to category III. The design and dimensioning are performed in accordance with all applicable international standards such as DIN, ANSI, AWWA and BS. Special dimensions can easily be accommodated at the customer's request.

In manufacturing steel accessory components, we adhere to the welding guidelines set forth in DIN EN ISO 3834-3, AD2000 Merkblatt HP 0, EN 1090-2 and DNV rules. Furthermore we prove welding procedure qualication reports (WPQR) for all our important weldings.

Certificates

- > Quality Management System ISO 9001:2015
- > Safety and Health Management System ISO 45001:2018
- > Approved Nuclear Supplier KTA 1401 & IAEA 50-C-Q
- > European Pressure Equipment Directive PED 2014/68/EU
- > Standard Welding Quality Requirements EN ISO 3834-3
- > Basic Safety Requirements in accordance with Pressure Equipment Directive AD2000 HP 0
- > Structural Components and Kits for Steel Structures EN1090-2 EX2

The latest certificate can be downloaded from our website at www.ditec-adam.de/qr/certificates

Download certificates

Testing and Documentation

ditec Expansion Joints undergo a series of controls and tests at each of the different steps in the manufacturing process and before they leave the factory. Our product is shipped to the customer until its quality and conformance to customer specifications is assured only.

If stipulated in the contract following properties of the processed rubber compound and fabric reinforcement is documented in test reports and works certificates:

- > Tensile Strength
- > Elongation at break
- > Hardness
- > Electrical properties
- > Temperature resistance
- > Fluid compatibility (e.g. drinking water or food approvals)
- > Aging / ozone resistance
- > Abrasion resistance
- > Gamma ray influence
- > Decontamination possibility

Innovations in our testing capabilities allow ditec to provide more testing options including, but not limited to:

- > Hydrostatic pressure testing
- > Vacuum testing
- > Leakage test
- > Burst pressure testing
- > Cycle life testing
- > Axial, lateral displacement under pressure

These tests are carried out in line with the procedures and guidelines approved by the Quality Control Department which certifies such tests. Inspection may be carried out, monitored and/or certified in presence of independent inspection companies or laboratories.

We generate for our products the necessary documentation. Depending on the specification, all acceptances and tests can be performed at our factory with the customer or their appointed expert present.

The typical scope of documentation for expansion joints may comprise of:

- > Proof of manufacturing prerequisite
- > Quality assurance program
- > Inspection & test plan with hold, review and witness
- > Time schedule / progress report
- > Technical data sheet
- > Drawings
- > Inspection certificates for traced raw materials
- > Welding certifications
- > Visual inspection and measurement protocol
- > Manufacturing acceptance document
- > Pressure equipment confirmation
- > Installation, operation and maintenance instruction
- > Packing list
- > Confirmation of compliance
- > Quality release certificate

Applications

Every industry and application has its own specific requirements on expansion joint and sealing technology. For us, it is therefore a matter of course to take these customer-specific requirements into account as early as the development stage. The result is high-quality expansion joints that are ideally suited to the application, specially developed for demanding areas.

Expansion joints assimilate

- > thermal growth,
- > mechanical vibrations,
- > acoustic oscillations
- > and tensions

in pipelines, on armatures and on pumps.

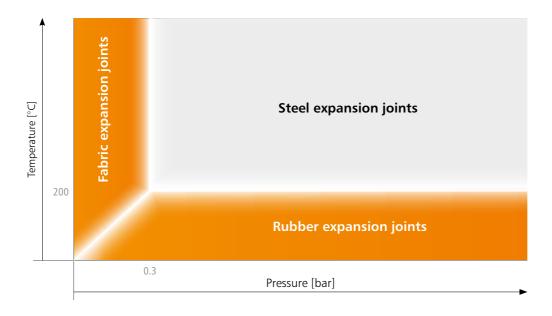
They are also used

- > for sound insulation,
- > as dismantling joints on pipeline armatures,
- > to assimilate assembly tolerances and
- > to seal pipeline wall penetrations.

The use of expansion joints in numerous applications has prooven their outstanding advantages such as

- minimal face to face dimensions in expansion joints offer untold economies compared with costly expansion bends or loops.
- > expansion joints are relatively light in weight and require no special handling equipment for installation.
- > the inherent flexibility of expansion joints permit almost unlimited flexing to recover from movements and require relative less force to move.

- > rubber elastomers are not subject to fatigue breakdown or embrittlement in comparison to steel.
- > the use of extra gaskets are unnecessary because rubber bellows come with vulcanized rubber flanges.
- a wide variety of different rubber compounds are available which are resistant against corrosive fluids and forms of chemical attack.
- > rubber expansion joints significantly reduce noise transmission in piping systems.
- > if designed accordingly rubber expansion joints can take shock stress from excessive hydraulic surge, water hammer or pump cavitation.


Typical industries where expansion joints are used:

- > Conventional and nuclear power plant technology
- > Industry and plant engineering
- > Water treatment technology
- > Rubbish and slurry incineration facilities
- > The chemical industry
- > Pharmaceutical and refinery technology
- > Gas and water supply
- > Apparatus, machine tool and engine construction
- > The cement and mineral processing industry
- > Shipbuilding
- > Ventilation, air conditioning and building technology
- > Smelters, steel mills and roller mills
- > The paper and food processing industries
- > Loading technology

Fabric and rubber expansion joints as well as steel expansion joints are used in nearly all industries. Their usage limitations depend on the operating pressure and temperature, as shown in the following diagram:

Fabric expansion joints can be used for pressures of up to 0.3 bar and, as long as the duct has an internal lining, up to a temperature of 1,200 °C. The application area of rubber expansion joints ranges up to temperatures of 200 °C and to pressures of over 0.3 bar, depending on the rubber grade. Temperatures of over 200 °C and high pressures are the classic application area of steel expansion joints. The transitions between the individual types are naturally fluid. The darker the colour, the deeper you are getting in the application range of the respective expansion joint variant.

We concentrate on the production of rubber and fabric expansion joints and specialise in offering technically mature expansion joint solutions for even the most demanding transition areas.

	RUBBER EXPANSION JOINTS							
	Universa	nl ↔ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	t	Lateral	‡ _\	Angula	r ()	
	full faced rubber flanges	swivel flanges	clamped fixing	full faced rubber flanges	swivel flanges	full faced rubber flanges	swivel flanges	
Cylindrical Rubber Expansion Joints without Arch	V100A Page 62	D100A Page 150	B100 Page 172	U100 > Page 200	D100 Page 250			
Without Arch	U900A Page 142		B900 Page 172					
	U110A Page 70	D110A Page 154	B110 Page 176	U110 > Page 206	D110 Page 256	U110F Page 280	D110F Page 288	
Single Arch Rubber Expansion Joints	U216A Page 82	D210A Page 160		U216 > Page 218	D210 Page 264			
	U910A Page 144	·	B910 Page 176	customized products available				
Double Arch Rubber Expansion Joints	U120A > Page 106	D120A Page 164	B120 Page 182	U120 > Page 236	D120 Page 270	customized products available	customized products available	
Triple or Multiple Arch Rubber Expansion Joints	U130A > Page 116	customized products available	B130 Page 188	customized products available	customized products available			

	RUBBER EXPANSION JOINTS							
	Universa	ı + <u></u>	† 	Lateral	‡ _\	Angula	r ();	
	full faced rubber flanges	swivel flanges	clamped fixing	full faced rubber flanges	swivel flanges	full faced rubber flanges	swivel flanges	
Reducer Rubber Expansion Joints	U300A Page 124	D300 Page 124	B300 Page 194	customized products available	customized products available			
	U110A > Page 70	customized products available		U110 > Page 206	customized products available			
Donut Rubber Expansion Joints	U400A Page 130							
	U500A							
Rubber Flanged Pipes	U100A RFP Page 66	customized products available		customized products available	customized products available			
Two Ply Testable Rubber Bellows	U110A 2P Page 98			customized products available				
FDA Rubber Expansion Joints				single, double, tr ansion joints and > Page 102				

PENETRATION SEALS						
High F	Pressure Ground Water	Seals	Low Pressure Air-Tight Membranes			
full faced rubber flanges clamped fixing		full faced rubber flanges	clamped fixing			
W100FF Page 304	W110FF Page 304	customized products available	customized products available	W200SS > Page 312	W300SS > Page 312	

Fire Penetration Seals						
full faced rubber flanges	clamped fixing					
	W200SS + W200SS	W200SS + W400SS	W200SS + W410SS			
customized products available						
	> Page 324	> Page 328	> Page 328			

FABRIC EXPANSION JOINTS							
Flange Expansion Joints		Expansion Joints for Smoke Escape, Ventilation and EX Protection Zones					
without arch	single or multiple arch(es)	Flexible expansion joints for smoke escape ventilators at 600°C for 120 min.	Expansion joints in smoke escape ducts at 600°C for 120 min.	Expansion joints for air conditioning and ventilation technology up to 200°C	Expansion joints for EX protection zones		
GU100	GU110	BGS600	BGK611	LT100 LT200	EX100		
> Page 366	> Page 368	> Page 388	> Page 390	> Page 392	> Page 394		

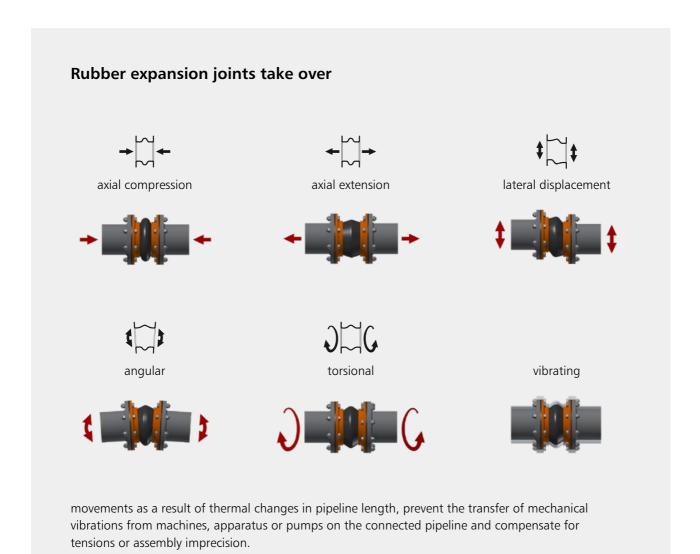
Belt Expansion Joints							
without arch	single or multiple arch(es)	on duct angles without arch	on duct angles with single or multiple arch(es)	on duct angles with pre-insulation, without arch	on duct angles with pre-insulation, with single or multiple arch(es)		
GB100	GB110	GB200	GB210	GB300	GB310		
				G			
> Page 372	> Page 374	> Page 376	> Page 378	> Page 380	> Page 382		

Type key

Rubber expansion joints U2 U3 U4 U5	Expansion joint with full face rubber flange Expansion joint with full face rubber flange and support rings at the arch foot Expansion joint with full face rubber flange, conical reducer Expansion joint with full face rubber flange and one arch facing inward Expansion joint with full face	0123	0 1 2	age 56 Without On the inside of the arch apex	A B	No tie rod Exterior: rubber bushings
U3 U4	rubber flange and support rings at the arch foot Expansion joint with full face rubber flange, conical reducer Expansion joint with full face rubber flange and one arch facing inward Expansion joint with full face	2	2		В	Exterior: rubber bushings
U4	rubber flange, conical reducer Expansion joint with full face rubber flange and one arch facing inward Expansion joint with full face					
	rubber flange and one arch facing inward Expansion joint with full face	3		Embedded in the arch apex	С	Exterior: rubber bushings Interior: thrust limiter
U5			3	External in the arch trough	E	Exterior: spherical bearings/ball disks
	rubber flange and one arch facing outward		4	Internally in the arch apex, externally in the arch trough	F	Hinge tie rod
U9	Expansion joints with full face rubber flange, rectangular		5	Embedded in the arch apex external in the arch trough	G	Cardan joint tie rod
D1	Expansion joint with swivel flange		6	Embedded in the arch foot	М	Exterior: spherical bearings/ball disks Interior: spherical bearings/ball disks
D2	Expansion joint with swivel flange with threaded holes		7	Spring-wire helix	S	Exterior: spherical bearings/ball disks Interior: thrust limiter
D3	Expansion joint with swivel flange, conical				R	Segment tie rod Exterior: rubber bushings
B1	Belt expansion joint for clamped fixing				K	Segment tie rod Exterior: spherical bearings/ball disks
В3	Belt expansion joint for clamped fixing, conical reducer				L	Segment tie rod Exterior: spherical bearings/ball disks Interior: spherical bearings/ball disks
В9	Belt expansion joint for clamped fixing, rectangular					
UD1	Expansion joint with full face rubber flange and swivel flange					
UB1	Expansion joint with full face rubber flange and for clamped fixing				Fixir	ng variant for type W
Penetration seals W1	Wall sealing expansion joint				SS	On D1: Clamp On D1-2: Clamp
W2	Wall sealing membrane				FS	On D1: Flange On D1-2: Clamp
W3	Wall sealing membrane with steam barrier				SF	On D1: Clamp On D1-2: Flange
W4	Fire penetration expansion joint					
Fabric GU1	Flange expansion joint				_	
expansion joints GB1	Belt expansion joint				Тур	e derivates
GB2	Belt expansion joint on duct angles				RFP	Rubber Flanged Pipe
GB3	Belt expansion joint on duct angles with pre-insulation				UDJ	Universal Dismantling Joint Lateral Dismantling Joint
BGS6	Flexible expansion joints for smoke escape ventilators				AO	Angular Offset
BGK6	Expansion joint for smoke escape				LO	Lateral Offset
LT1	ducts Expansion joint for air conditioning				2P FDA	2 Ply Testable Rubber Bellow Food Drug Association
LT2	and ventilation technology				IPB	In-line Pressure Balanced
EX1	Expansion joint for EX protection zones				EPB	Elbow Pressure Balanced
Example U110A U1	with full faced rubber flange	1 arch	0	without support ring	Α	no tie rod

Rubber expansion joints

Technical Information	> 27
Universal Expansion Joints	
Universal expansion joints with full faced rubber flange	> 61
Universal expansion joints with swivel flange	> 149
Universal expansion joints for clamped fixing	> 171
Lateral Expansion Joints	
Lateral expansion joints with full faced rubber flange	> 199
Lateral expansion joints with swivel flange	> 249
Angular Expansion Joints	
Angular expansion joints with full faced rubber flange	> 279
Angular expansion joints with swivel flange	> 287
Appendix	> 295


Technical information

Rubber expansion joint variants	> 28
Installation of expansion joints, sliding points and fixed points	> 34
Expansion Joint Technology	
Bellows construction	> 41
Fixing types	> 48
Tie rod design	> 54
Vacuum and support rings	> 56
Flow liners	> 57
Expansion joint protective covers	> 58

Pipeline planning > Rubber expansion joint variants

A rubber expansion joint is a flexible connector fabricated of synthetic elastomers and fabrics to provide stress relief in piping systems due to vibration and/or movements. They effectively dampen and insulate against the transmission of noise and vibration generated by mechanical equipment. ditec's rubber expansion joints have a cycle life in the tens of millions. The highly compliant and resilient characteristics make them ideally suited for earthquake, as well as pressuresurge and water hammer dampening. Given the inherent characteristics of synthetic elastomers, they are not subject to fatigue breakdown or embrittlement. A wide variety of synthetic elastomers and fabrics are available to the industries. Materials are treated and combined to meet a wide range of practical pressure/ temperature operating conditions, corrosive attack, abrasion and erosion. ditec offers a variety of elastomers and construction materials chosen specifically to meet the needs of even the most demanding applications. Minimal face-to-face dimensions in rubber expansion joints offer advantages, compared with costly expansion bends, loops or metal expansion joints. It is common in both new construction and replacement applications to encounter pipe misalignment. Minor misalignment can be taken up with standard rubber expansion joints, and custom units can be fabricated with large permanent offsets.

Combined movement calculation

The potential axial, lateral and angular movements are specified for the respective expansion joint systems. In the event of combined axial extension and lateral displacement, the values drop as follows:

Permitted lateral displacement for a given axial extension

$$I_{per} = I_{max} * \left(1 - \frac{ae_{eff}}{ae_{max}}\right)$$

Permitted lateral displacement for a given axial compression

$$I_{per} = \frac{I_{max}}{2} * \left(2 - \frac{A}{ac_{max} * 0.75}\right)$$

with $A = ac_{eff} - ac_{max} * 0.25$ in case of $A < 0 \rightarrow insert 0$

Permitted axial extension for a given lateral displacement

$$ae_{per} = ae_{max} * \left(1 - \frac{I_{eff}}{I_{max}}\right)$$

Permitted axial compression for a given lateral displacement

$$ac_{per} = \frac{ac_{max}}{4} * \left(4 - \frac{3 * B}{l_{max} * 0.5}\right)$$

with $B = I_{eff} - I_{max} * 0.5$ in case of $B < 0 \rightarrow insert 0$

[mm] given axial compression ac_{eff} [mm] given axial extension ae_{eff} given lateral displacement [mm] I_{eff} [mm] maximum axial compression ac_{max} ae_{max} [mm] maximum axial extension [mm] maximum lateral displacement I_{max} [mm] permitted axial compression acper [mm] permitted axial extension ae_{per} [mm] permitted lateral displacement Iper

Example

For an expansion joint with a given axial compression of $ac_{eff} = 25$ mm, the permitted lateral displacement l_{per} is searched. The maximum values for the movements of the expansion joint are:

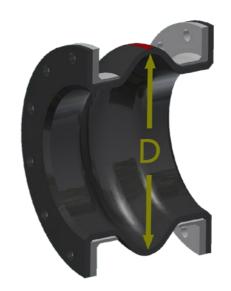
 ac_{max} [mm] 40 ae_{max} [mm] 15 I_{max} [mm] 30

$$A = ae_{eff} - ac_{max} * 0.25 = 25 \,mm - 40 \,mm * 0.25 = 15 \,mm$$

$$I_{per} = \frac{I_{max}}{2} * \left(2 - \frac{A}{ac_{max} * 0.75}\right) = \frac{30 \, mm}{2} * \left(2 - \frac{15 \, mm}{40 \, mm * 0.75}\right) = 22.5 \, mm$$

Expansion joint thrust calculation

Thermal movements along with other external forces and displacements, including ground settlement can quickly exceed allowable pipe and anchor stresses. Rubber expansion joints absorb these stresses and replace them with their own low stiffness (spring rate). The inherent flexibility of rubber expansion joints permits almost unlimited flexing to recover from imposed movements, requiring relatively less force to move, thus preventing damage to motion equipment.


When expansion joints are installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the inner diameter of the arch of the expansion joint times the maximum pressure that will occur with the line. The result is a force expressed in Newton which causes stress on the adjacent pipeline anchors. In order to reduce the forces, a lower arch can be used in case of small movements.

$$T = \frac{\pi * D^2}{4} * P$$

T [N] thrust

D [mm] inner diameter of the arch

P [MPa] pressure

Expansion joint spring rates

The force to deflect an expansion joint is defined as, the total load required to deflect the expansion joint a distance equal to the maximum rated movement of the product. This force figure is expressed in Newton for compression, elongation and lateral movements. The force is expressed in Newtonmeter for angular deflection.

The spring rate is defined as the force in Newton required to deflect an expansion joint one millimeter in compression and elongation or in lateral direction. For angular movement the spring rate is the force needed in Nm to deflect the expansion joint one degree. These forces should be considered only as approximates which may vary with the elastomers and fabrics used in fabrication and depend from the specific construction type.

The spring rate for a filled arch type expansion joint is approximately 4 times that of a standard single arch type. This rate is dependent upon the material used in the filled arch section of the expansion joint.

The spring rate of a multi-arch type expansion joint is equal to the spring rate for a single arch type divided by the number of arches.

Spring rates can be found in the technical appendix (> page 296).

Universal expansion joint

Movement:

Movement: ‡] ‡

Lateral expansion joint

Universal expansion joints are installed in piping systems that are anchored on both sides of the joint. No tie rods are necessary. If tie rods are installed as a safety measure, the locking nuts must be backed off with a clearance equal to the specified axial movement. This construction, as a standalone expansion joint, represents the most cost-effective arrangement when used in rigid piping systems with main anchors and numerous guides at specific spacing.

Bellows: Expansion joint with one or more

moulded arches.

Tie rod: None

Pressure: The expansion joint will exert a thrust

> force on the anchors. The pressure from the active bellows cross-section causes stress on the adjacent pipeline anchors. In order to reduce the forces, a lower arch can be used for small movements.

Stiffness rate: Movements give rise to forces that rise

under pressure and need to be taken into account in dimensioning the pipeline. Axial and lateral stiffness rates to move the expansion joint under pressure can be found in the appendix.

(> page 296)

Lateral expansion joints are installed in unanchored piping or connected to isolated equipment. Tie rods are necessary. Once tie rods are installed the joint will no longer act as an expansion joint, since the pressure will extend the joint to the nuts of the tie rods. The joint will no longer take up axial movement. It will make up for misalignment, lateral and possibly angular movement. The nuts of the tie rods should be threaded against tie rod bearings, thereby preventing joint from extending.

Bellows: Expansion joint with one or more

moulded arches.

Tie rod: Several threaded rods mounted around

the circumference receive pressure from

the active bellows cross-section.

The tie rods assimilate the axial stresses Pressure:

of the expansion joint.

Stiffness rate: Movements give rise to forces that rise

under pressure and which need to be taken into account in dimensioning the pipeline. Lateral stiffness rates to move the expansion joint under pressure can be found in the technical appendix.

(> page 296)

Friction: Frictional forces arise in the tie rod

bearings and must be overcome in addition to the stiffness rates.


Angular expansion joint

Movement: ()

In-line pressure balanced expansion joint

Movement: ↔ ‡ ‡

An angular rubber expansion joint is designed to facilitate and isolate angular rotation in one plane. The arrangement consists of a pair of hinge plates connected with pins and attached to the internal hardware of the expansion joint. The hinge assembly must be designed for the internal pressure thrust forces of the system. They can be used in sets of two to absorb large lateral movements in a single plane. This optimally designed arrangement is an effective solution for absorbing large axial thermal movements from an adjacent pipe run. They are commonly used when the support structure or adjacent equipment have load limitations.

Bellows: Expansion joint with one moulded arch.

Joint: The angular joints bear the pressure forces from the active bellows cross-

section. Angular joints for movement on one plane. Cardan joints for move-

ment on two planes.

Pressure: The joints bear the axial reaction forces

of the expansion joint.

Friction: Frictional forces arise in the joint

bearings and must be overcome in addition to the stiffness rates.

In-line pressure balanced rubber expansion joints are the only effective solution for directly absorbing large axial movements while continuously self-restraining the pressure thrust forces.

They are designed to absorb all-directional movement, compensate for misalignments and relieve pipe and anchor stresses.

Bellows: The two outer main rubber expansion

joints need to have the same effective area as the center balancing rubber

expansion joint.

Pressure:

Tie rod/ This arrangement consists of tie rods

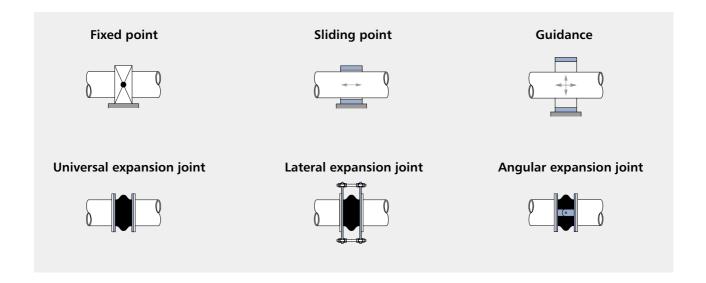
inter-connecting its balancing joint to its opposing two main joints and is commonly used when the support structure or adjacent equipment have

load limitations.

Friction: Frictional forces arise in the tie rod

bearings and must be overcome in addition to the stiffness rates.

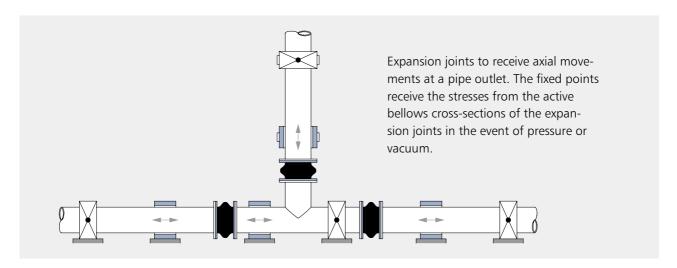
Pipeline planning > Installation of expansion joints, sliding points and fixed points

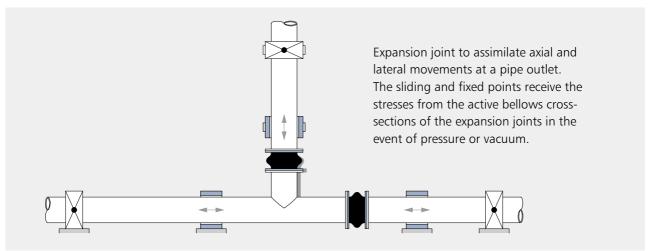

The selection and application of expansion joints plays a significant role in system performance, quality and reliability. Leveraging our extensive industry experience since 1973, ditec uses a systematic approach to finding the optimal solutions for any piping system. We apply the most sophisticated analysis and calculation software tools such as Finite Element Analysis (FEA), 3D Modelling and CAD to select the most appropriate expansion joint to fit into the corresponding pipeline system.

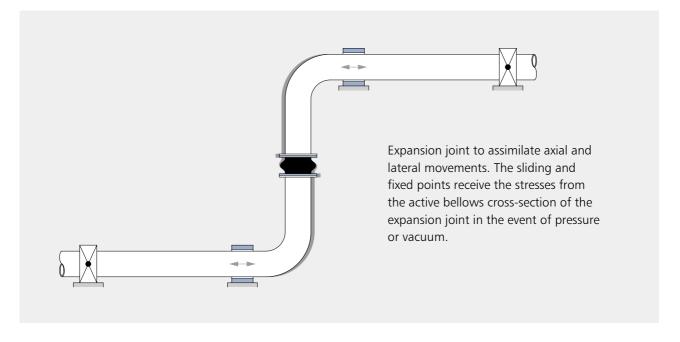
The pressure in the line gives rise to forces that may lead to line instability if no sliding points and fixed points are provided. If movements occur in different directions inside a pipeline, these need to be divided by planning anchors at suitable intervals. If stable anchors are not possible, the expansion joints need to be mounted such

that the axial movement is diverted and can be received by tied lateral expansion joints. The correct mounting of universal, lateral and angular expansion joints is crucial to the functionality of the entire pipeline system.

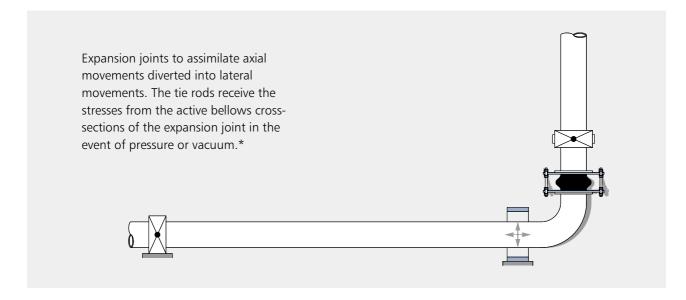
Pipeline systems should be fitted with ventilation equipment at high points and draining equipment at low points in order to avoid uncontrolled water ingress or vacuum.

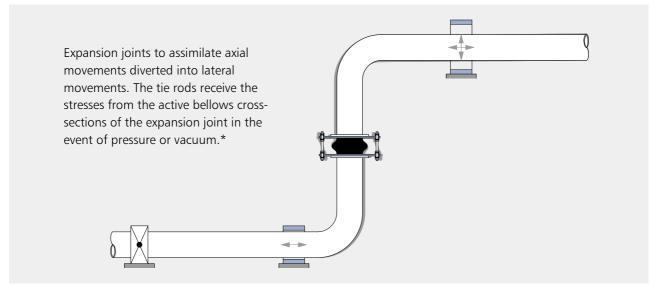

Pressure and vacuum safety mechanisms in the lines prevent the expansion joints from being overloaded. Likewise, the medium temperature should be monitored using appropriate means. Information about the maximum operating temperatures and pressures is specified based on the respective expansion joint types.



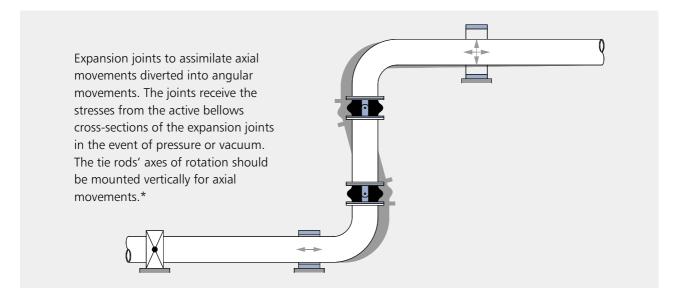

Universal expansion joints for axial, lateral and angular movement

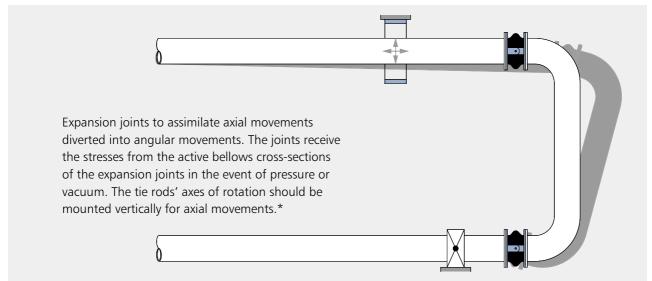
Expansion joint to receive axial movements along the pipeline axis. The fixed points receive the stresses from the active bellows cross-section of the expansion joint in the event of pressure or vacuum. In the event of large axial movements, the pipeline should be subdivided into several sections using sliding and fixed points.



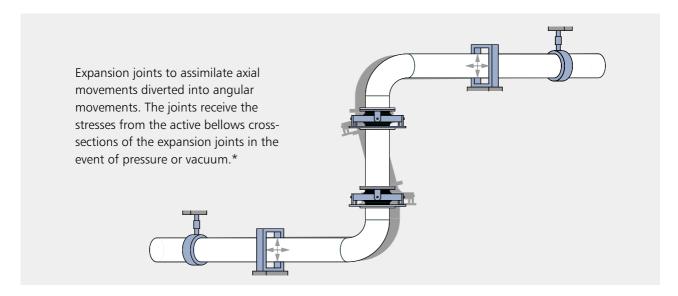


Lateral expansion joints for lateral movement

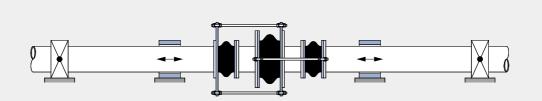




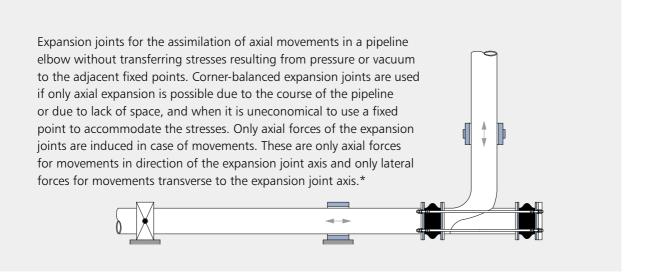
^{*}Tie rods and hinges are designed to absorb the reaction forces of the expansion joint under pressure. Additional forces (e.g. weight forces) to be transmitted by the expansion joints must be specified.



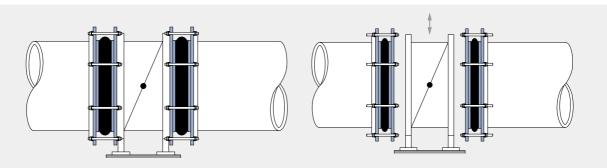
Angular expansion joints for angular movement



Cardan joint expansion joints

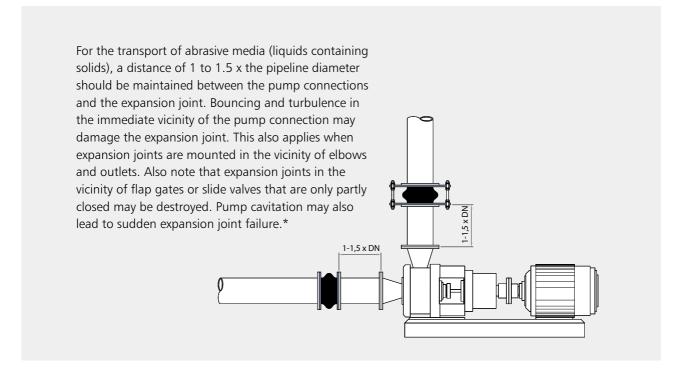


^{*}Tie rods and hinges are designed to absorb the reaction forces of the expansion joint under pressure. Additional forces (e.g. weight forces) to be transmitted by the expansion joints must be specified.


Pressure balanced expansion joints

Expansion joints for the assimilation of axial movements without transferring stresses resulting from pressure or vacuum to the adjacent fixed points, apparatus or machines. The difference between the active bellows cross-sections of a large and small expansion joint corresponds to the active bellows cross-section surface area of a small expansion joint. If the tie rods are installed so that they intersect, the stresses will cancel each other out. Only axial forces of the expansion joints are induced in case of movements.*

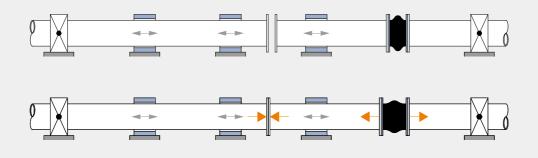
Dismantling joints


In order to compensate for installation imprecision or to simplify connection and disconnection, tied expansion joints can be used. On the one hand, the tie rods prevent the transfer of stresses to the connected armature. On the other hand, after the flange connection is loosened using the tie rod flange, the rubber bellows can be compressed by its maximum potential axial movement capability in order to create clearance for dismantling of the armature.*

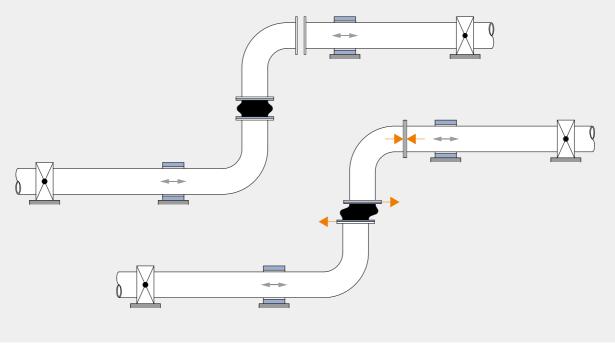
^{*}Tie rods and hinges are designed to absorb the reaction forces of the expansion joint under pressure. Additional forces (e.g. weight forces) to be transmitted by the expansion joints must be specified.

Pump connection

Expansion joints are used to disconnect pumps from pipeline systems in order to avoid transferring forces, tensions and oscillations. We recommend installing expansion joints on the pressure side using tie rods in order to avoid transferring the expansion joint stresses to the pump connections. In the event of a vacuum exceeding 0.8 bar absolute on the vacuum side, a vacuum support ring should be used. The expansion joints should be installed as close as possible to the pump connections on both the pressure and vacuum sides.


^{*}Tie rods and hinges are designed to absorb the reaction forces of the expansion joint under pressure.

Additional forces (e.g. weight forces) to be transmitted by the expansion joints must be specified.


Expansion joint preload

Large axial and lateral movements can be reduced by presetting the line against the direction of movement.

In order to increase axial movement, the expansion joint can be pre-loaded to its maximum extension during installation. There is a risk, however, that for expansion joints with swivel flanges, the sealing bead will spring free of the groove of the backing flange and that for expansion joints with full-faced rubber flanges, the latter cannot be positioned so as to be congruent with the pipe flange. If pre-loads of more than 10 mm are needed, a flange connection will need to be disconnected at another location. Now the expansion joint can be installed free of tension and the flange disconnection sites that were opened before can be closed again.

In order to increase lateral movement, the expansion joint can be pre-loaded to its maximum lateral displacement against the direction of flow during installation. During operation, it will move back to the opposite side through the zero point. In this way, the lateral movement can be increased by up to 100%. There is a risk, however, that for expansion joints with swivel flanges, the sealing bead will spring free of the groove of the backing flange and that for expansion joints with full-faced rubber flanges, the latter cannot be positioned so as to be congruent with the pipe flange. If pre-loads of more than 5 mm are needed, a flange connection will need to be disconnected at another location. Now the expansion joint can be installed free of tension and the flange disconnection sites that were opened before can be closed again.

Expansion joint technology > Bellows construction

Our rubber expansion joint designs always comply with the European Pressure Equipment Directive PED 2014/68/ EU for the specified operating conditions, follow the guidelines of the Fluid Sealing Association (FSA) Technical Handbook for Non-Metallic Expansion Joints and ASTM F1123 - 87 Standard Specification for Non-Metallic Expansion Joints.

An expansion joint is constructed as follows:

- > medium-resistant internal layer (bore)
- > pressure-resistant fabric insert
- > weather, ozone and UV-resistant external layer (cover) Suitable rubber blends and fabric grades are available to meet your specific requirements.

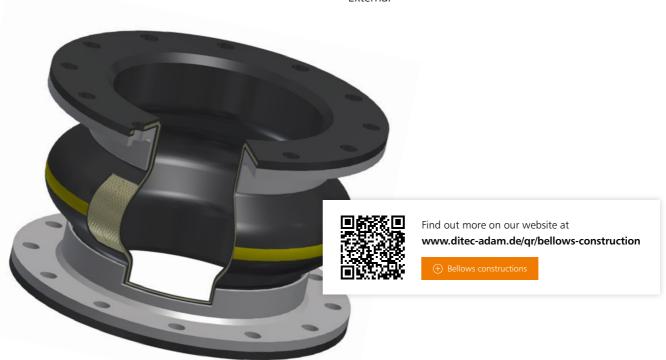
The dimensions and movements listed for the expansion joint types are values that are commonly found on the market, yet they are not binding and can be adjusted to suit your application.

In this catalogue, we distinguish between:

Rubber expansion joint variants

Universal expansion joints
Lateral expansion joints
Angular expansion joints
Pressure balanced expansion joints
Dismantling expansion joints
Expansion joints with offset
Donut expansion joints
Rubber flanged pipes
Two ply testable bellows
FDA expansion joints
Penetration seals
Dog Bone expansion joints
Rubber moulded parts

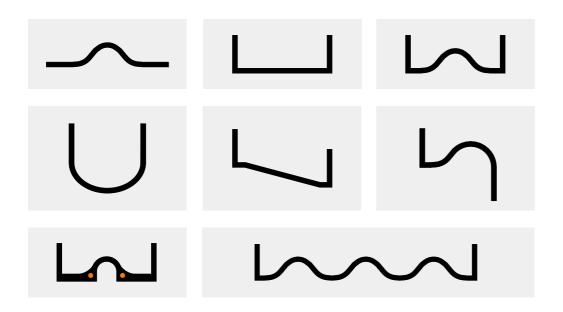
Fixing variants


Full faced rubber flanges Swivel flanges Clamped fixing

Bellows shape

Cylindrical
Single or multiple arches
Conical

Support ring variants


Internal Embedded External

Bellows cross-sections

Dimensions, pressure and movement require special designs. Our manufacturing process allows us to produce a great variety of bellows cross-sections in order to provide

optimal solutions to any application you may have. The designs shown are simply a rough overview.

Filled arch

The open arch design of the standard spool type expansion joint may be modified to reduce possible turbulence and to prevent the collection of solid materials that may settle from the solution handled and remain in the archway.

Arch-type expansion joints with embedded vacuum ring(s) may be supplied with a bonded-in-place soft rubber filler to provide a smooth interior bore. Filled arch joints also have a seamless tube so the arch filler cannot be dislodged during service. Filled arch, built as an integral part of the carcass, significantly restricts the flexibility of the joint and shall be used only when necessary. Movements of expansion joints with filled arch are limited to 50% of the normal movements of comparable size expansion joints with unfilled open arches.

Most of ditec's expansion joint type listed have streamlined, self-cleaning arch contours which help to constantly flush out solid matter. A filled arch is therefore only needed for rare applications.

Rubber grades

The rubber blends adapted to our requirements are obtained from reputable manufacturers. We work with them continuously to further develop and optimize the blends.

The physical and chemical properties are specified in detail in the materials datasheets and every batch of rubber delivered is subjected to extensive goods receipt inspections.

The expansion joint bellows are made using individual rubber films and reinforcements and are vulcanised after moulding. Vulcanisation refers to cross-linking the rubber by subjecting it to high pressure and temperature. The rubber is converted from its original plastic state into an elastic state by molecular bridge bonding using sulphur or peroxides.

All rubber grades are subject to natural aging that reduces elasticity and raises Shore hardness. Under normal conditions, one can assume that the Shore hardness increases on average by 1° Shore A per year. This value may rise at higher temperatures. For this reason, we recommend that you inspect the Shore hardness at regular intervals and replace the expansion joints when the value

reaches approximately 80° Shore A. Assuming a Shore hardness of approximately 60° Shore A, the component lifetime will be 15 to 20 years. Wear and external influences such as UV radiation and ozone damage are also involved here.

Discover our shore hardness test video at www.ditec-adam.de/qr/rubber-grades

① Rubber grades

We will select the appropriate rubber grade for your application from a wide variety of different blends depending on the composition of the medium and the operating temperature:

44 Rubber expansion joints > Technical information

Rubber	Marking	Temperatur range °C	Characteristics and application
EPDM Ethylene propylene diene monomer		-40 to +100	 Excellent resistance against aging, UV, ozone, sunlight and weathering. Ideal for outdoor service. Good gas tightness. Outstanding hot water and vapor resistance. Good resistance to heat, ozone, alkalis and oxygenated solvents. Highly soak-resistant and chemical resistant to dilute acids, bases, acetone and alcohol. Good general purpose elastomer. Standard blend: conductive with ATEX certification. Do not use with petroleum oil service such as aliphatic, aromatic or chlorinated hydrocarbons.
Ethylene propylene diene monomer		-40 to +140	 Permanent high temperature resistant up to 140°C. Excellent resistance against aging, UV, ozone, sunlight and weathering. Ideal for outdoor service. Good gas tightness. Outstanding hot water and vapor resistance. Good resistance to heat, ozone, alkalis and oxygenated solvents. Highly soak-resistant and chemical resistant to dilute acids, bases, acetone and alcohol. Do not use with petroleum oil service such as aliphatic, aromatic or chlorinated hydrocarbons.
Ethylene propylene diene monomer	-	-40 to +100	 Drinking water approval according to British WRAS, German KTW and French ACS standard. United states FDA compliant. Outstanding hot water and vapor resistance.
Ethylene propylene diene monomer		-40 to +100	 Bright rubber grade for fat free foodstuff. Can be used in direct contact with food, beverage, and pharmaceutical products. United states FDA and German BfR compliant. Non-conductive.
IIR Isobutylene isoprene rubber	_	-20 to +100	 Lowest permeability. Very good resistance to water, heat, animal fats, veg. oils, greases, ozone, alkalis, sunlight, and oxygenated solvents. Highly resistant to many dilute acids and bases. Not very resistant to aliphatic, aromatic and chlorinated hydrocarbons.
CSM Chloro-sulfonated polyethylene rubber		-20 to +100	 Outstanding resistance to weather, particularly sunlight and ozone. Superior flame and abrasion resistance as well as excellent resistance to acids, alkalis and oxidation. Good general oil resistance, also at elevated oil temperatures e.g. to be used for air compressors with oil aerosols.
NBR Nitrile butadiene rubber		-30 to +100	 Good heat and aging resistance, especially if air is kept out (e.g. in oil). Excellent soak-resistance against non-polar or slightly polar media, e.g. fuels, butane and propane, mineral oils, hydrocarbon solvents, dilute acids, alkalis, lubricants, greases, vegetable and animal fats or oils. Moderate aging properties.
NBRbeige Nitrile butadiene rubber		-30 to +100	 Bright rubber grade for fatty and oily foodstuff. Can be used in direct contact with food, beverage, and pharmaceutical products. United states FDA and German BfR compliant. Non-conductive.

Rubber	Marking	Temperatur range °C	Characteristics and application
CR Chloroprene rubber		-20 to +90	 Very good UV, ozone and weather resistance. Flame retardant, as well as abrasion resistant. Resists alkalis, inorganic acids, and salt solutions. Chemical resistance against alkalis, dilute acids, aqueous salt solutions and reductive agents. Good resistance to animal and vegetable oils. Adequate resistance to paraffinic, naphthenic and high-molecular oils. Moderate resistance to petroleum oils. Not suitable for oxidizing materials and concentrated mineral acids.
NR Natural rubber		-20 to +70	 Excellent resilience and rebound elasticity of up to 600 % with high tensile strength. Excellent resistance to tear and abrasion. Satisfactory heat aging and ozone resistance. Low resistance to hot water and steam. Poor resistance to solvents and petroleum products Not resistant to chlorinated hydrocarbons, aromatics, esters and ketones.
FPM Fluorine polymer	_	-20 to +180	 Excellent aging, UV, ozone and weather resistance. Most universal chemical resistance. Excellent resistance to aggressive chemicals, solvents, and halogenated hydrocarbons, also hot oils, aliphates and aromatics. Excellent resistance to steam up to 120°C, aqueous acids, amines and concentrated caustics/bases/alkalis. High gas-tightness. Non-conductive.
FPMbeige Fluorine polymer		-20 to +180	 > Bright rubber grade with excellent chemical and temperature resistance. > Can be used in direct contact with food, beverage, and pharmaceutical products. > United states FDA compliant. > Non-conductive.
Q Silicone		-60 to +200	 Excellent resistance to aging, UV, ozone and weather. Bright rubber grade can be used in direct contact with food, beverage, and pharmaceutical products. United states FDA and German BfR compliant. Satisfactory resistance to oils of alphatic nature. Should not be used permanently with steam over 120°C. Not resistant to fuels, chlorinated hydrocarbons, esters, ketones or ether. Highly susceptible to acids and bases. Satisfactory gas-tightness. Non-conductive.

PTFE lining

If it is not possible to select a rubber grade that will endure for the long term due to the corrosiveness of the medium or the diversity of materials being conveyed, we can provide expansion joints with an interior fluoroplastic lining of PTFE / FEP. Fluoroplastic offers exceptional resistance to almost all chemicals within the temperature range of the expansion joint body construction. The lining is fabricated as an integral part of the expansion joint during manufacture, covers all wetted surfaces in

the tube and flange area and is firmly connected to the exterior rubber bellow. A detailed specification of the operating conditions is required when considering employing a PTFE/FEP-lined rubber expansion joint. Generally movement capability of some expansion joint types with fluoroplastic liner is limited to 60 to 70 % of the normal movements of comparable size expansion joints without lining.

Fabric reinforcements

The reinforcements of the rubber bellows are high-quality synthetic fabrics which bear the forces from the internal pressure or vacuum. The type, quantity and arrangement of the reinforcements are designed in keeping with Pressure Equipment Directive PED 2014/68/EU. All carriers are impregnated with rubber, completely embedded in the bellows and are firmly connected to the body.

The following fabrics are used depending on the bellows design temperature:

up to 100°C:	Polyamide fabric Polyester fabric
up to 180°C:	Aramide fabric
up to 200°C:	Glass fabric Steel mesh

Metal reinforcements

Wire or solid steel rings made from carbon or stainless steel embedded in the bellows construction are used as strengthening members of the expansion joint.

A steel ring embedded in the top of the arch prevents the expansion joint body from collapsing under vacuum; it has no media contact and is not washed around by flow turbulence. Special packing and transport means must be considered for very large dimensions because the bellow with embedded steel ring cannot be squeezed anymore.

Requirement specification

We need the following information in order to select a rubber expansion joint:

Expansion joint variants

- > Universal expansion joint
- > Lateral expansion joint
- > Angular expansion joint
- > Penetration seal

Fixing type

- > Full faced rubber flange
- > Swivel flange
- > Clamped fixing

Dimensions

- > Diameter
- > Installation length
- > Flange norm

Medium

- > Composition
- > Aggregation state
- > Proportion of solids

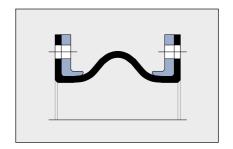
Temperature

- > Minimum and maximum operating temperature
- > Accident temperature and duration
- > Design temperature

Pressure

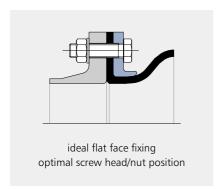
- > Pressure and vacuum
- > Pressure surge
- > Alternating pressure
- > Design pressure
- > Test pressure

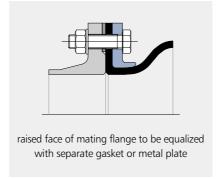
Movement

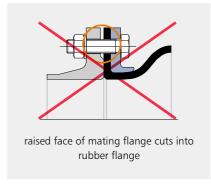

- > Axial compression
- > Axial extension
- > Lateral displacement
- > Angular movement
- > Torsion
- Oscillation frequency and amplitude

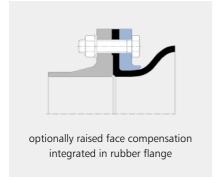
Expansion joint technology > Fixing types

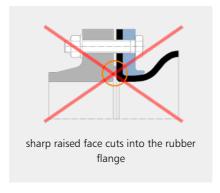
Flanged fixing

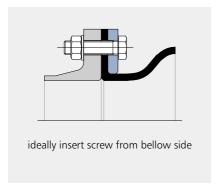

With full faced rubber flanges and backing flanges

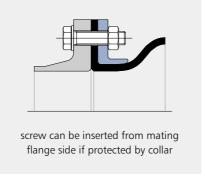

A full face integral rubber flange design with backing flanges is available for types without, with single and multiple arch design. The rubber flange of the bellows is molded in an equal thickness to the flange diameter. The backing flanges are designed as flat press-on flanges with or without support collars. The manufacturing process is economical for very large diameters also. For transport reasons, the backing flanges can also be delivered in a split construction. Hereto special measurements such as cutting through the holes or end plates to connect the backing flange parts to form an integral flange on-site need to be taken.

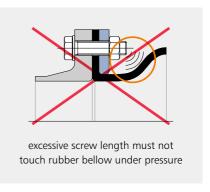


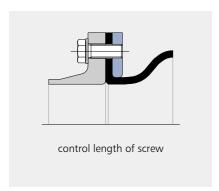

The fixing of the expansion joint needs to be performed in keeping with specific rules in order to assure reliable sealing of the flange connection. Ideally full face rubber flanges shall be clamped to flat face pipe flanges. It is essentially required that any recess or raised face of pipe flanges must be equalized in order to avoid damaging of the rubber flange surface. If the recess or raised face is specified in advance ditec can offer to integrate the negative of the recess or raised face into the rubber flange. Then no extra measurements such as separate steel plates or additional rubber gaskets to flatten the surface need to be taken onsite.

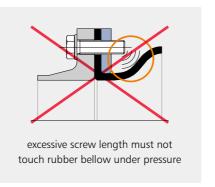

Full face rubber expansion joints are self-sealing. So an additional separate gasket is not required.

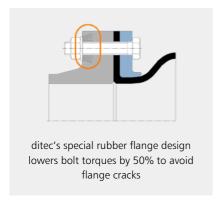


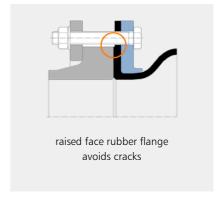






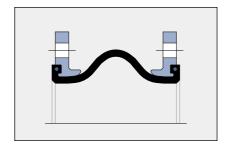




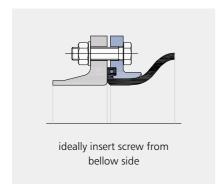

Glass reinforced epoxy piping (GRP) specialities

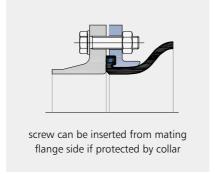
Flanges of glass reinforced epoxy piping cannot withstand the required tightening torques of full-faced rubber expansion joint fixed to without cracking depending from design pressure and pipe standard. In order to avoid special measurements on the GRP pipe flange ditec has developed a special sealing technology in the bellows rubber flange to lower the torques by approx. 50%. This also eliminates the need for any grooves for O-rings in the GRP flange and the most economic flat face GRP flange can be applied.

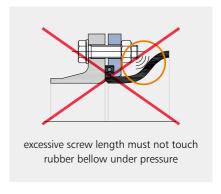
In case of expansion joints in GRP pipelines with collar flange fixing and backed steel rings the rubber flange surface shall have a raised face up to the outer diameter of the GRP stub to avoid cutting of sharp edges into the rubber.

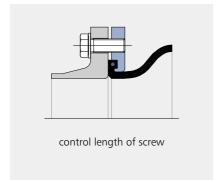


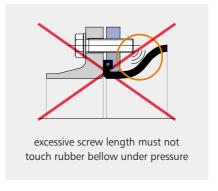
With self-sealing rubber bulges and swivel backing flanges

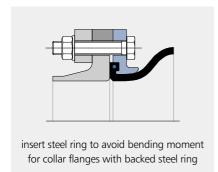

An expansion joint design with self-sealing rubber bulges and swivel backing flanges is available for types without, with single and multiple arches. The rubber flange of the bellows is designed as a sealing bulge with an embedded steel core. The swivel backing flanges can be made with or without support collars and can be used to simplify the installation of the expansion joint for misaligned flange bores. Standard sizes are offered up to a diameter of \varnothing 1,200 mm. For larger dimensions, the costs associated with turning the groove into the steel flange rise sharply, but can be offered on request. Backing flanges will always be delivered in a one-piece construction

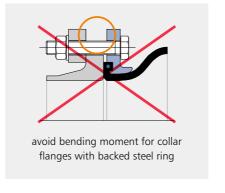


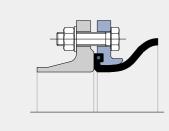

except for some rare applications with Fluoroplastic liner. Hereto special measurements such as cutting through the holes or end plates to connect the backing flange parts to form an integral flange need to be taken.

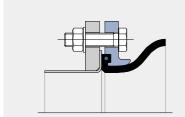

The fixing of the expansion joint needs to be performed in keeping with specific rules in order to assure reliable sealing of the flange connection. Rubber expansion joints with swivel flanges maybe installed on raised-face or flat-face mating flanges. Caution shall be taken that sealing bead sits in full width on the raised face surface to avoid cutting into the rubber bulges when torqueing.


The seal bead eliminates any requirement for gaskets between mating flanges.

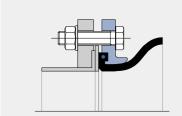




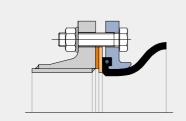




sealing bulge must completely sit on raised face

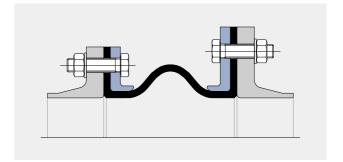

sharp raised face will damage sealing bulge

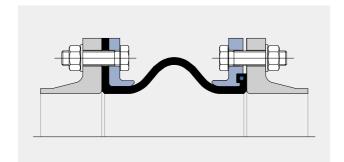
sealing bulge must fully sit on fixing surface


damage of sealing bulge and/or leakage problems

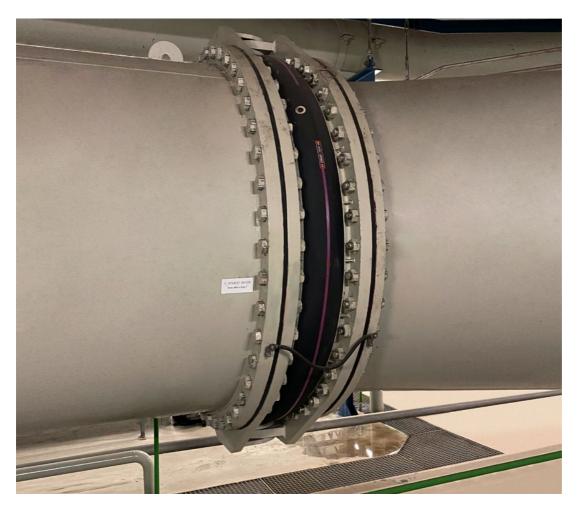
install metal plate between rubber lining and sealing bulge

loss of tightness when direct contact between rubber lining and sealing bulge

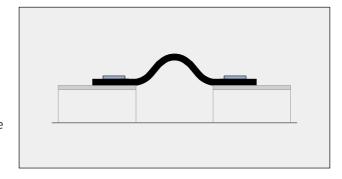

sealing bulge must completely sit on fixing surface

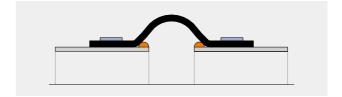


damage of sealing bulge and/or leakage problems


Different flange dimensions and diameter change

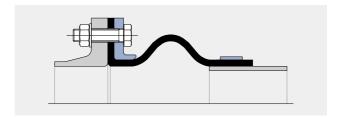
The flange dimensions can be designed in keeping with all the international norms, such as DIN, ANSI, AWWA, BS or JIS. Special dimensions can be accommodated. This also applies to expansion joints with different flange dimensions or with diameter jumps. The bores of the backing flanges can be manufactured as threaded holes or clearance holes as required.


Universal rubber expansion joint Typ U110A \varnothing 2,000 PN 6 in a cooling water line of a power plant


Clamped fixing

Belt expansion joints have cylindrical ends (sleeves) that are clamped to the pipeline ends using clamping clips.

The capped sleeve ends have an inner diameter dimension equal to the outer diameter of the pipe. These joints are designed to slip over the straight ends of the open pipe and be held securely in place with clamps. This type of joint is recommended only for low to medium pressure and vacuum service because of the difficulty of obtaining adequate clamp sealing.



At higher pressures (1 bar) and greater diameters ($> \varnothing 500$ mm), the fixing of a sleeve expansion joint may lead to sealing problems. There is also the risk that the expansion joint will be pulled off the pipeline. For this reason, we recommend that you attach a welding bead or a wire to the pipeline ends.

We can manufacture all our slip-on sleeve rubber expansion joint types exactly customized to the outer diameter of the piping. If needed, the expansion joint can be made using flange fixing on one side and a sleeve on the other side.

Slip-on sleeve rubber expansion joints are self-sealing. So an additional separate gasket is not required.

Clamping clips

Design: Depending on pressure and the diameter, endless clamp belt, screw thread belt, small clamps or

hinge bolt clamps. At higher pressures, 2 adjacent clamps per fastening side.

Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm Hinge bolt clamp: depending on Ø: 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310

Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Expansion joint technology > Tie rod design

Rubber expansion joints cause force on the adjacent sliding or fixed points when under pressure (active bellows cross-section surface area x operating pressure). The force created by this pressure is designated as pressure thrust. Where the pipe supports are not designed to absorb this force, tie-rods must be incorporated across the joint from flange to flange so that the expansion joint is restrained in axial direction and can move lateral only. It can be eliminated also by using angular expansion joints with hinges and pin, such that the pipe anchors and guides are unburdened accordingly.

Based on the Pressure Equipment Directive PED 2014/68/ EU the number and size of tie-rods must be calculated to take the full pressure thrust plus extra safety margins at the required hydraulic pressure test. Most commonly tie-rods are directly integrated into the backing flanges which influences their construction thickness depending from the design pressure and dimensions. The use of gusset plates placed behind the mating flange is an alternative but introduces pointwise forces into the flange. This technology works for steel pipes but their use is not allowed for glass reinforced epoxy (GRP) flanges which could break under these extra unconsidered forces.

Tie rods: Several threaded rods mounted around the circumference assimilate pres-

sure from the active bellows cross-section. Pipe flanges need to be parallel

aligned for lateral expansion joints

Pressure: The tie rods assimilate the axial stresses of the expansion joint

Stiffness rate: Movements give rise to forces that rise under pressure and need to be taken

into account in dimensioning the pipeline. Lateral stiffness rates to move the expansion joint under pressure can be found in the technical appendix; you

may also enquire directly with us

Design: Dimensioning according to design pressure (test pressure) based on the

Pressure Equipment Directive

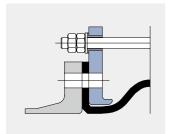
Pipeline: For laterally stayed expansion joints the flange diameter of the pipeline must

not be bigger than as defined in the norm, as otherwise the tie rod touches

against the side of the flange and the lateral movement is restricted

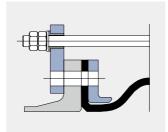
Materials: Tie rod materials can be according to DIN or ASTM standard which defines

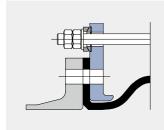
slightly different tensile and yield strength which is considered in our


calculation

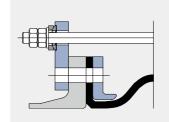
Coating: Spherical bearings and ball disks PTFE-coated

Tie rods galvanised, hot-dip galvanised or PTFE-coated

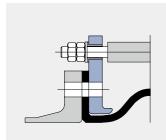

The following tie rod designs are used depending on the requirements:


Design: B

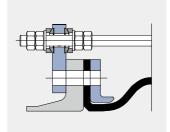
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Design: R

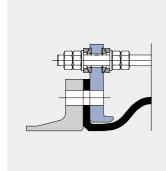
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Design: E

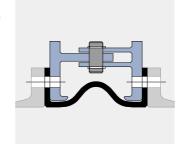
Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Design: K

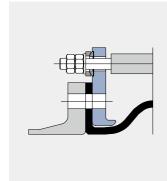
Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Design: C

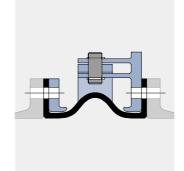
Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces


Design: L

Gusset plates: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces


Design: M

Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces


Design: F

Hinge for angular movements on one plane with plates and pins to absorb the reaction forces from pressure and vacuum. Rotation axis in the center of the installation gap

Design: S

Tie rods mounted outside in spherical washers and ball disks with compression sleeve to accommodate pressure/ vacuum thrust forces

Design: G

Cardan joint for angular movements on two planes with plates and pins to absorb the reaction forces from pressure axis and vacuum. Rotation in the center of the installation gap

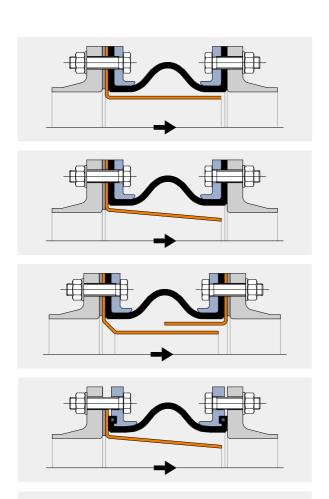
Expansion joint technology > Vacuum and support rings

Rubber expansion joints can be equipped with internal vacuum spirals, vacuum rings and/or external support rings/ropes to protect against deformation of the expansion joint bellows depending on the operating pressure. The diameters of the rings are individually designed and calculated against deformation under full vacuum respectively against test pressure considering extra safety margins.

Vacuum rings / spirals can be placed inside of the arch apex and are in contact with the medium flow. Special grades of stainless and super duplex steel with suitable corrosion resistance are used for the corresponding application. More and more common is the design of expansion joints with steel rings embedded in the rubber. It has no media contact, is not washed around by flow

turbulence and a cost-effective standard carbon steel grade with high tensile strength and therefore reduced diameter can be embedded. The movement capability of an expansion joint with embedded vacuum ring in the top of the arch is approx. 25% lower than a loose ring inside of the arch. Large bore rubber expansion joints at high design pressures and vacuum are mostly furnished with loose internal vacuum ring which is supplied in several parts. Because of design limits for the ring diameter and transportation issues embedded vacuum rings are in this case uneconomically.

External carbon or stainless steel support rings and ropes are only applicable for multiple arch expansion joint types. Carbon steel support rings are hot-dip galvanized or rubber coated to resist environmental impacts.


Design		Vacuum ring	Support ring	Pressure
1 With internal vacuum ring		Medium contact, inside the arch apex	Without	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute
2 With embedded vacuum ring		No medium contact, embedded into the arch apex of the rubber bellows	Without	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute
3 No vacuum ring, with support ring in the arch trough		Without	External in the arch trough	Depending on the diameter up to 40 bar, slight vacuum
4 With internal vacuum ring and external support ring in the arch trough		Medium contact, inside the arch apex	External in the arch trough	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute
5 With embedded vacuum ring and external support ring in the arch trough		No medium contact, embedded into the arch apex of the rubber bellows	External in the arch trough	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute
6 With embedded support rings in the arch foot		No medium containto the arch foot bellows		Depending on the diameter up to 16 bar, for vacuum up to 0.5 bar absolute
Materials				
Stainless steel	Carbon steel, rubberised	C	arbon steel, embed	dded

Expansion joint technology > Flow liners

Rubber expansion joints have streamlined arch contours in order to reduce pressure drop (resistance coefficient), turbulence and flow losses. In most cases it is possible to use them without an additional flow liner. This is only needed for abrasive media and for flow speeds of more than 5 m/s. The expansion joint bellows should then be fully protected by the flow liner. The sleeve extends through the bore of the expansion joint with a full faced flange on one end. It is constructed of metal, fluoroplastic or GRP. It reduces frictional wear of the expansion joint and provides smooth flow, reducing turbulence. The lateral displacement needs to be taken into account in dimensioning the flow liner and can in some circumstances lead to severe narrowing of the pipeline cross-section. The medium's direction of flow must be taken into account during installation. To avoid deposits between the flow liner and the expansion joint, the tube can be perforated multiple times around its circumference, so that the intermediate space is flushed out and no deposits are able to form in the dead spots. This type of sleeve should not be used where high viscosity fluids, such as tars, are being transmitted. These fluids may cause packing or caking of the open arch or arches, which reduces movements and in turn may cause premature expansion joint failures.

The flow liners are installed along with the expansion joint. An additional seal is required between the flow liner flange and the pipeline flange. This extra seal is workshop-side fixed on the flange of the flow liner already. Expansion joints with a full faced rubber flange need a flow liner flange with holes while for expansion joints with a sealing bead the flow liner flange can be centered with the screws.

Cylindrical flow liner

Conical flow liner

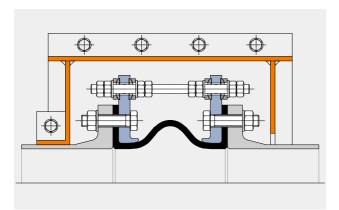
Streamlined

Telescoping flow liner

Complete bellows protection

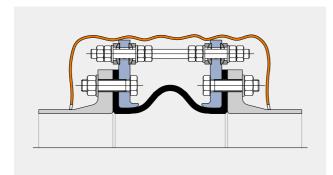
Flow liners with a centring flange

For expansion joints with a sealing bulge

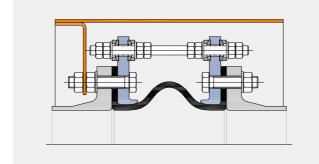

Flow liners with flushing holes

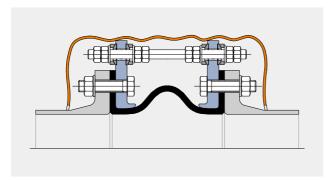
To avoid caking of medium between flow liner and bellow

Expansion joint technology > Expansion joint protective covers


Extreme external influences require that the expansion joints be protected by special measures. Appropriate protective covers have been developed to this end: Ground protective shield, UV protective shield or cover, fire and splash protective cover. These types of shields/ covers, when manufactured from metal, have one end which is bolted to or clamped to the mating pipe flange. The other end is free, designed to handle the movements of the expansion joint.

Caution: Protection / spray covers have some insulating properties. It is not recommended to insulate over elastomeric expansion joints. Because temperature containment can accelerate the aging of the rubber and makes required inspections difficult.


Ground protective shield


A protective shield of metal is required when an expansion joint is installed underground. It protects against damage to bellows, dirt and earth pressure. Specified loads strength and static calculations define the thickness of the shield as well as numbers and dimensioning of the stiffeners. Made from galvanized / paint coated carbon or stainless steel, in two or more parts, affixes to the medium pipe with an integrated clamp.

Protective shield or cover

Protective covers should be used on expansion joints that carry high temperature, corrosive media or to prevent from exterior damage such as extreme solar radiation or weather effects, mechanical impacts or chemicals. This cover will also protect personnel or adjacent equipment in the event of leakage or splash. Metal shields do not enclose the expansion joint and still allow ventilation while wrap around protective covers of impregnated fiberglass fully shield the expansion joint. Protective shields from metal are made from galvanized / paint coated sheets, with two or more parts, multiple one-sided attachment on the circumference.

Fire protective cover

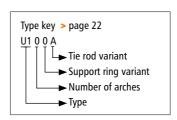
Made from coated glass fibre fabric and insulating layers. Protects against the effects of flame up to 800 °C for a duration of 30 minutes.

Used in ships and for fire water supply lines in plant buildings.

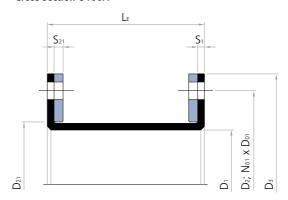
Ground protective shield supplied in 2 halves

Metal protective cover against solar radiation

Universal expansion joints with full faced rubber flange


Cylindrical Expansion Joints without Arch U100A Universal expansion joint without arch > 62 U100A RFP Rubber flanged pipe > 66 **Single Arch Expansion Joints** U110A Universal expansion joint with one arch > 70 U216A Universal expansion joint with one arch > 82 U110A UDJ Universal dismantling joint > 86 U110A AO Universal single arch expansion joint with angular offset > 90 U110A LO Universal single arch expansion joint with lateral offset > 94 U110A 2P Two ply testable rubber bellow > 98 U110A FDA FDA rubber expansion joint > 104 **Double Arch Expansion Joints** U120A Universal expansion joint with two arches > 106 **Triple or Multiple Arch Expansion Joints** U130A Universal expansion joint with three or more arches > 116 **Reducer Expansion Joints** U300A Concentric or eccentric reducing expansion joint > 124 **Donut Expansion Joints** U400A Vacuum donut with one arch facing inward > 130 U500A Pressure donut with one arch facing outward > 136 **Rectangular Expansion Joints** U900A Rectangular universal expansion joint without arch > 142 U910A Rectangular universal expansion joint with > 144

one or several arch(es)


U100A Ø 80 - 4,000 mm

> Type U100A

Cross section U100A

Universal expansion joint without arch

Design: Streamlined, cylindrical rubber bellows with full faced rubber

flanges, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single- or multi-part backing flanges. Optional with embedded support ring(s). In compliance with PED 2014/68/EU, FSA Technical

Handbook and ASTM F1123 - 87.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 64–65)

Custom length on request

Pressure: Up to 16 bar depending on diameter and length

Vacuum stability on request

Movement: For small axial and lateral movements

★ † (> page 64–65)

Application:
Plant construction,
sand/gravel extraction
industry, dredgers,
food processing e.g. as
suction/pressure hoses,
in conveying lines, on
pumps and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part, round backing flanges with clearance holes

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

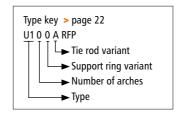
Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

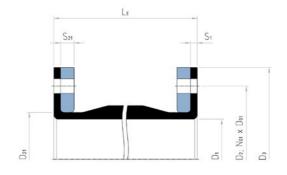
Conical flow liner

Telescoping flow liner (> page 57)

					Install	ation le			sign pre	essure					
		up to 10	bar $L_E =$	150 mm					200 mm			up to 10	bar $L_E =$	250 mm	
									n request						
		Move	ment		. А		Move	ement		Α.		Move	ment		. A .
Ø	+[]-		₹ }	₹		+[]-		ξΉ	₹		+[]-		ξΉ	₹	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100	8	5	10	0	79	10	6	13	0	79	13	8	17	0	79
125	8	5	10	0	123	10	6	13	0	123	13	8	16	0	123
150 175	8	5 5	9 9	0	177 254	10 10	6 6	12 12	0	177 254	13 13	8	15 15	0	177 254
200	8	5	9	0	314	10	6	12	0	314	13	8	14	0	314
250	8	5	8	0	491	10	6	11	0	491	13	8	14	0	491
300	8	5	8	0	716	10	6	11	0	716	13	8	13	0	716
350 400	8	5 5	8 8	0	990 1,269	10 10	6 6	10 10	0	990 1,269	13 13	8	13 13	0	990 1,269
450	8	5	7	0	1,612	10	6	10	0	1,612	13	8	12	0	1,612
500	8	5	7	0	1,987	10	6	10	0	1,987	13	8	12	0	1,987
550	8	5	7	0	2,376	10	6	9	0	2,376	13	8	12	0	2,376
600 650	8	5 5	7 7	0	2,856 3,318	10 10	6 6	9	0	2,856 3,318	13 13	8	12 11	0	2,856 3,318
700	8	5	7	0	3,893	10	6	9	0	3,893	13	8	11	0	3,893
750	8	5	7	0	4,418	10	6	9	0	4,418	13	8	11	0	4,418
800	8	5	7	0	5,090	10	6	9	0	5,090	13	8	11	0	5,090
850 900	8	5 5	6 6	0	5,675 6,433	10 10	6 6	9 9	0	5,675 6,433	13 13	8	11 11	0	5,675 6,433
950	8	5	6	0	7,088	10	6	8	0	7,088	13	8	11	0	7,088
1000	8	5	6	0	7,933	10	6	8	0	7,933	13	8	10	0	7,933
1050	8	5	6	0	8,659	10	6	8	0	8,659	13	8	10	0	8,659
1100 1150	8	5 5	6 6	0	9,607 10,387	10 10	6 6	8 8	0	9,607 10,387	13 13	8	10 10	0	9,607 10,387
1200	8	5	6	0	11,404	10	6	8	0	11,404	13	8	10	0	11,404
1250	8	5	6	0	12,272	10	6	8	0	12,272	13	8	10	0	12,272
1300	8	5	6	0	13,376	10	6	8	0	13,376	13	8	10	0	13,376
1350 1400	8	5 5	6 6	0	14,314 15,504	10 10	6 6	8 8	0	14,314 15,504	13 13	8	10 10	0	14,314 15,504
1450	8	5	6	0	16,513	10	6	8	0	16,513	13	8	10	0	16,513
1500	8	5	6	0	17,789	10	6	8	0	17,789	13	8	10	0	17,789
1600	8	5	6	0	20,232	10	6	8	0	20,232	13	8	10	0	20,232
1650 1700	8	5 5	6 6	0	21,382 22,832	10 10	6 6	8 8	0	21,382 22,832	13 13	8	9 9	0	21,382 22,832
1800	8	5	6	0	25,617	10	6	7	0	25,617	13	8	9	0	25,617
1900	8	5	6	0	28,502	10	6	7	0	28,502	13	8	9	0	28,502
1950	8	5	5	0	29,865	10	6	7	0	29,865	13	8	9	0	29,865
2000 2100	8	5 5	5 5	0	31,573 34,801	10 10	6 6	7 7	0	31,573 34,801	13 13	8	9 9	0	31,573 34,801
2200	8	5	5	0	38,186	10	6	7	0	38,186	13	8	9	0	38,186
2250	8	5	5	0	39,761	10	6	7	0	39,761	13	8	9	0	39,761
2300	8	5	5	0	41,728	10	6	7	0	41,728	13	8	9	0	41,728
2400 2500	8	5 5	5 5	0	45,428 49,284	10 10	6 6	7 7	0	45,428 49,284	13 13	8	9 9	0	45,428 49,284
2550	8	5	5	0	51,071	10	6	7	0	51,071	13	8	9	0	51,071
2600	8	5	5	0	53,297	10	6	7	0	53,297	13	8	9	0	53,297
2700	8	5	5	0	57,468	10	6	7	0	57,468	13	8	9	0	57,468
2800 2850	8	5 5	5 5	0	61,795 63,794	10 10	6 6	7 7	0	61,795 63,794	13 13	8	9 8	0	61,795 63,794
2900	8	5	5	0	66,280	10	6	7	0	66,280	13	8	8	0	66,280
3000	8	5	5	0	70,922	10	6	7	0	70,922	13	8	8	0	70,922
3100	8	5	5	0	75,720	10	6	7	0	75,720	13	8	8	0	75,720
3150 3200	8	5 5	5 5	0	77,931 80,676	10 10	6 6	7 7	0	77,931 80,676	13 13	8	8 8	0	77,931 80,676
3300	8	5	5	0	85,789	10	6	7	0	85,789	13	8	8	0	85,789
3400	8	5	5	0	91,059	10	6	7	0	91,059	13	8	8	0	91,059
3450	8	5	5	0	93,482	10	6	7	0	93,482	13	8	8	0	93,482
3600 3800	8	5 5	5 5	0	102,071 113,710	10 10	6 6	6 6	0	102,071 113,710	13 13	8	8 8	0	102,071 113,710
4000	8	5	5	0	125,978	10	6	6	0	125,978	13	8	8	0	125,978


Installation length ($L_{\!\scriptscriptstyle{E}}$) at design pressure															
	up to 10	bar $L_E =$	300 mm			up to 10	bar $L_E =$	350 mm			up to 10	bar L _E =	400 mm		
						higher pr	ressures o	n request							
lal	Move	ment	\ - /	A	11	Move	ement	\ - /	A	Lal	Move	ment	\ - /	A	_,
*	E E	±mm	±°	cm ²	→	Em Em	±mm	±°	cm ²	→	Em Em	±mm	±°	Cm ²	Ø
15	9	20	0	79	18	11	23	0	79	20	12	27	0	79	100
15	9	19	0	123	18	11	22	0	123	20	12	25	0	123	125
15 15	9 9	18 18	0	177 254	18 18	11 11	21 21	0	177 254	20 20	12 12	24 24	0	177 254	150 175
15	9	17	0	314	18	11	20	0	314	20	12	23	0	314	200
15	9	17	0	491	18	11	19	0	491	20	12	22	0	491	250
15 15	9 9	16 15	0	716 990	18 18	11 11	19 18	0	716 990	20	12 12	21 21	0	716 990	300 350
15	9	15	0	1,269	18	11	18	0	1,269	20	12	20	0	1,269	400
15	9	15	0	1,612	18	11	17	0	1,612	20	12	20	0	1,612	450
15	9	14	0	1,987	18	11	17	0	1,987	20	12	19	0	1,987	500
15 15	9 9	14 14	0	2,376 2,856	18 18	11 11	17 16	0	2,376 2,856	20	12 12	19 19	0	2,376 2,856	550 600
15	9	14	0	3,318	18	11	16	0	3,318	20	12	18	0	3,318	650
15	9	13	0	3,893	18	11	16	0	3,893	20	12	18	0	3,893	700
15 15	9	13 13	0	4,418 5,090	18 18	11 11	16 15	0	4,418 5,090	20 20	12 12	18 18	0	4,418 5,090	750 800
15	9	13	0	5,675	18	11	15	0	5,675	20	12	17	0	5,675	850
15	9	13	0	6,433	18	11	15	0	6,433	20	12	17	0	6,433	900
15	9	13	0	7,088	18	11	15	0	7,088	20	12	17	0	7,088	950
15 15	9	13 12	0	7,933 8,659	18	11	15 15	0	7,933 8,659	20 20	12 12	17 17	0	7,933 8,659	1000 1050
15	9	12	0	9,607	18	11	14	0	9,607	20	12	16	0	9,607	1100
15	9	12	0	10,387	18	11	14	0	10,387	20	12	16	0	10,387	1150
15 15	9	12 12	0	11,404 12,272	18 18	11 11	14 14	0	11,404 12,272	20 20	12 12	16 16	0	11,404 12,272	1200 1250
15	9	12	0	13,376	18	11	14	0	13,376	20	12	16	0	13,376	1300
15	9	12	0	14,314	18	11	14	0	14,314	20	12	16	0	14,314	1350
15 15	9	12 12	0	15,504 16,513	18 18	11 11	14 14	0	15,504 16,513	20 20	12 12	16 16	0	15,504 16,513	1400 1450
15	9	12	0	17,789	18	11	14	0	17,789	20	12	15	0	17,789	1500
15	9	11	0	20,232	18	11	13	0	20,232	20	12	15	0	20,232	1600
15	9	11	0	21,382	18	11	13	0	21,382	20	12	15	0	21,382	1650
15 15	9	11 11	0	22,832 25,617	18 18	11 11	13 13	0	22,832 25,617	20	12 12	15 15	0	22,832 25,617	1700 1800
15	9	11	0	28,502	18	11	13	0	28,502	20	12	15	0	28,502	1900
15	9	11	0	29,865	18	11	13	0	29,865	20	12	15	0	29,865	1950
15 15	9	11 11	0	31,573 34,801	18 18	11 11	13 13	0	31,573 34,801	20 20	12 12	15 14	0	31,573 34,801	2000 2100
15	9	11	0	38,186	18	11	13	0	38,186	20	12	14	0	38,186	2200
15	9	11	0	39,761	18	11	12	0	39,761	20	12	14	0	39,761	2250
15 15	9	11	0	41,728	18	11	12	0	41,728	20	12	14	0	41,728	2300
15 15	9	11 10	0	45,428 49,284	18 18	11 11	12 12	0	45,428 49,284	20	12 12	14 14	0	45,428 49,284	2400 2500
15	9	10	0	51,071	18	11	12	0	51,071	20	12	14	0	51,071	2550
15	9	10	0	53,297	18	11	12	0	53,297	20	12	14	0	53,297	2600
15 15	9	10 10	0	57,468 61,795	18 18	11 11	12 12	0	57,468 61,795	20	12 12	14 14	0	57,468 61,795	2700 2800
15	9	10	0	63,794	18	11	12	0	63,794	20	12	14	0	63,794	2850
15	9	10	0	66,280	18	11	12	0	66,280	20	12	14	0	66,280	2900
15 15	9	10 10	0	70,922 75,720	18 18	11 11	12 12	0	70,922 75,720	20	12 12	13 13	0	70,922 75,720	3000 3100
15	9	10	0	75,720	18	11	12	0	75,720 77,931	20	12	13	0	75,720	3150
15	9	10	0	80,676	18	11	12	0	80,676	20	12	13	0	80,676	3200
15	9	10	0	85,789	18	11	12	0	85,789	20	12	13	0	85,789	3300
15 15	9 9	10 10	0	91,059 93,482	18 18	11 11	11 11	0	91,059 93,482	20	12 12	13 13	0	91,059 93,482	3400 3450
15	9	10	0	102,071	18	11	11	0	102,071	20	12	13	0	102,071	3600
15	9	10	0	113,710	18	11	11	0	113,710	20	12	13	0	113,710	3800
15	9	10	0	125,978	18	11	11	0	125,978	20	12	13	0	125,978	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.


U100A RFP Ø 80 - 4,000 mm

- > Type U100A RFP without steel inserts
- > Type U102A RFP with embedded steel rings
- > Type U107A RFP with embedded spring-wire helix

Cross section U102A RFP

Rubber flanged pipe

Design:

Straight rubber pipe connectors are specifically engineered for your particular application, compensate all-directional movements and have a cycle life in the tens of millions. Rubber pipes are constructed with a smooth interior tube of different thickness depending on the later use, specially compounded from an elastomer that satisfies the chemical and abrasion requirements of your application. Multiple layers of high-strength cord, helical spring steel wire or steel rings and a seamless cover are embedded into the pipe wall during the manufacturing process, resulting in a product precisely designed for your pressure and vacuum requirements. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Depending on the pressure and diameter end fittings can come with full face rubber flange or with sealing bulge with a metal core and swivel backing flanges.

Flexible rubber pipes should always be installed in piping systems that are properly anchored. So that the connectors are not required to absorb compression or elongation piping movements. If axial forces can act in the system to compress or elongate the rubber pipe, tie rods will be required to prevent axial movement.

Application:

Paper & pulp plants, transportation of mineral ores and slurries, sand and gravel plants, chemical-petrochemical and industrial process piping systems, steel mills, marine services, sewage treatment plants e.g. pump in- or outlets, dredgers, compressors, cooling towers

www.ditec-adam.de/ en/contact

Diameters: \emptyset 80 to 4,000 mm, custom diameters possible

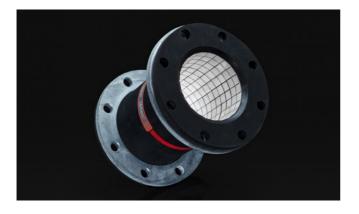
Length: Up to 7,000 mm

Custom length on request

Pressure: Up to 40 bar depending on diameter and length

Helical-wound steel reinforcements or individual steel rings embedded in the carcass to provide strength for high pressure operations, to prevent collapse under vacuum and to offer tight bending radiuses without

buckling or kinking.


Movement: For lateral movements and angular deflection

Reduction of noise and vibration

‡□ **‡**□ **‡**□

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single-part, round backing flanges with clearance holes

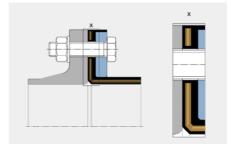
Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements (> page 298)

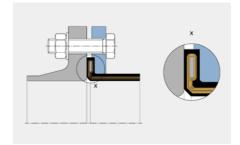
Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

End fitting

Flanged type: The most common type of rubber pipe


incorporates a full face flange integral with the body of the pipe. The flange is drilled to conform to the bolt pattern of the companion metal flange of the pipeline. This type of rubber faced flange, backed with a steel flange, is of sufficient thickness to form a tight seal against the companion flange without


the use of a gasket.

flange.

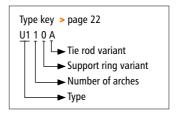
Swivel flange type:

This design has a sealing bulge which forms a line pressure with the steel core insert and anchors the cord fabrics for very high pressure requirements. It has a solid floating metallic flange, drilled according to the mating pipe

Vacuum / Pressure inserts

TYPE	Support rings	Steel insert
U100A RFP		Without steel reinforcement. Discharge pipe can be used for many different dredging applications, as a connecting hose between a dredger and its discharge line, or a flexible joint between rigid pipe elements.
U102A RFP		Suction & discharge rubber pipe with steel rings, designed for rugged applications, offer a tight bending radius under severe working conditions without buckling or kinking.
U107A RFP		Suction and discharge rubber pipe with spring-wire helix offer a weight saving alternative to rubber pipes with round steel-rings.

Replaced rubber flanged pipe in operation of a paper mill



Rubber flanged pipe with embedded steel rings installed on dredger ship

U110A Ø 80 - 4,000 mm

- Type U110A without vacuum ring
- > Type U111A with internal vacuum ring
- > Type U112A with embedded vacuum ring

Universal expansion joint with one arch

Design: High elastic, streamlined, single wide arch rubber bellows with full

faced rubber flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Tech-

nical Handbook and ASTM F1123 - 87.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 74–79)

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Movement: For large axial, lateral and angular movements

Spring rate: Axial and lateral spring rates (> page 296)

Application:
Cooling water systems,
desalination plants,
drinking water supply,
plant constructions e.g.
in pipelines, on pumps,
as dismantling joints, on
condensers and vessels

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part, round backing flanges with support collar and clearance holes

Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements (> page 298)

Materials:Carbon steel, stainless steel or aluminiumCoating:Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

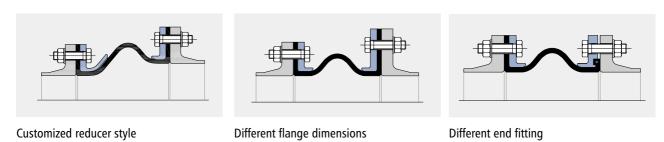
Protective shield or cover

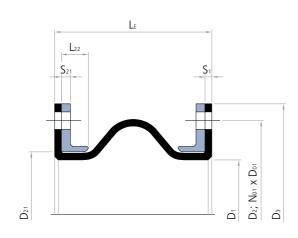
Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

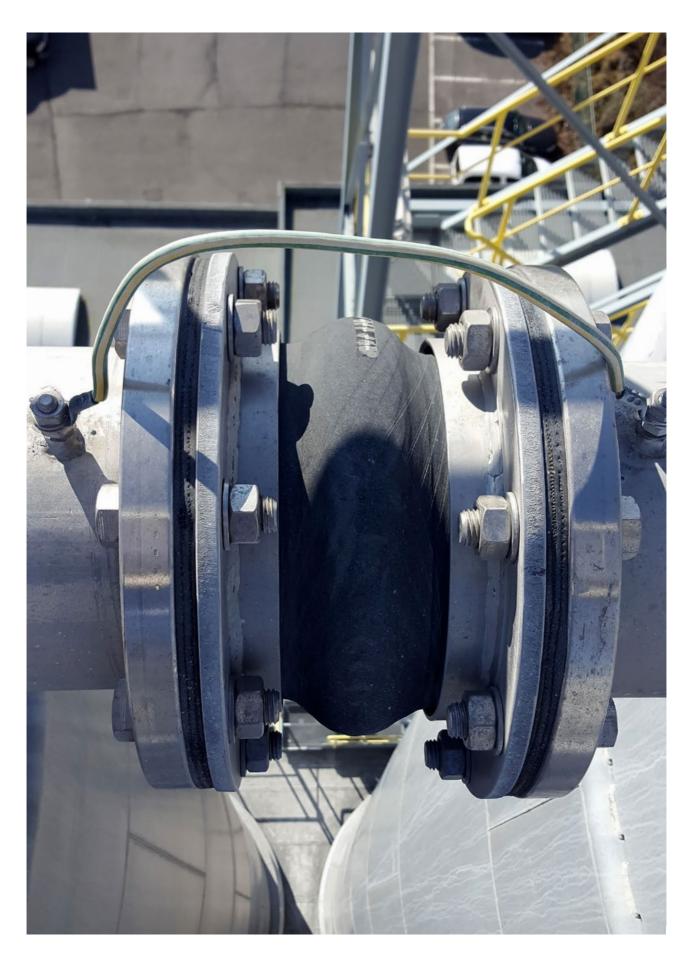
Telescoping flow liner (> page 57)


Filled arch:


Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
U110A		None	Depending on the diameter up to 100 bar, vacuum stability on request	> page 74
U111A		Medium contact, inside the arch	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 76
U112A		No medium contact, embedded in the arch	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 78
Material	S			
Stainless	steel	Carbon steel, rubberised	Carbon steel, embedded	

Specials


Cross section U110A

Example: Type U111A

Type U110A single arch rubber expansion joint \varnothing 300 mm PN6

					<u>Install</u>	ation <u>le</u>	ngth (L	_F) at d <u>e</u>	sign pro	essure_					
		up to 10	bar L _E =	150 mm			<u> </u>		200 mm			up to 10	bar L _E =	250 mm	
							higher pr	essures o	n request						
		Move	ment		Α.		Move	ment		Α.		Move	ment		Α .
Ø	+[^]-		₹ }	\leftarrow		+[/]-	*	ξΉ	\leftarrow		+[/]-		E.A	\leftarrow	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100	31	10	19	11.3	177	40	20	28	21.8	254	44	20	30	21.8	260
125	31	10	19	9.1	241	40	20	28	17.7	330	44	20	30	17.7	337
150 175	31 31	10 10	18 18	7.6 6.5	314 415	40 40	20 20	27 27	14.9 12.9	415 531	44 44	20 20	29 29	14.9 12.9	423 539
200	31	10	18	5.7	491	40	20	26	11.3	616	44	20	29	11.3	625
250	31	10	18	4.6	707	40	20	26	9.1	855	44	20	28	9.1	866
300	31	10	17	3.8	973	40	20	26	7.6	1,146	44	20	27	7.6	1,158
350 400	31 31	10 10	17 17	3.3 2.9	1,288 1,605	40 40	20 20	25 25	6.5 5.7	1,486 1,825	44	20 20	27 27	6.5 5.7	1,500 1,840
450	31	10	17	2.5	1,987	40	20	25	5.1	2,231	44	20	26	5.1	2,248
500	31	10	17	2.3	2,402	40	20	24	4.6	2,669	44	20	26	4.6	2,688
550	31 31	10 10	16 16	2.1 1.9	2,827 3,349	40 40	20 20	24 24	4.2 3.8	3,117 3,664	44 44	20 20	26	4.2 3.8	3,137 3,685
600 650	31	10	16	1.8	3,848	40	20	24	3.5	4,185	44	20	26 26	3.5	4,208
700	31	10	16	1.6	4,465	40	20	24	3.3	4,827	44	20	25	3.3	4,852
750	31	10	16	1.5	5,027	40	20	23	3.1	5,411	44	20	25	3.1	5,437
800 850	31 31	10 10	16 16	1.4 1.3	5,741 6,362	40 40	20 20	23 23	2.9 2.7	6,151 6,793	44 44	20 20	25 25	2.9 2.7	6,179 6,822
900	31	10	16	1.3	7,163	40	20	23	2.5	7,620	44	20	25	2.5	7,651
950	31	10	16	1.2	7,854	40	20	23	2.4	8,332	44	20	25	2.4	8,365
1000	31	10	16	1.1	8,742	40	20	23	2.3	9,246	44	20	25	2.3	9,280
1050 1100	31 31	10 10	15 15	1.1 1.0	9,503 10,496	40 40	20 20	23 23	2.2 2.1	10,029 11,047	44 44	20 20	25 24	2.2 2.1	10,064 11,085
1150	31	10	15	1.0	11,310	40	20	23	2.0	11,882	44	20	24	2.0	11,921
1200	31	10	15	1.0	12,370	40	20	22	1.9	12,969	44	20	24	1.9	13,009
1250 1300	31 31	10 10	15 15	0.9 0.9	13,273 14,420	40 40	20 20	22 22	1.8 1.8	13,893 15,066	44 44	20 20	24 24	1.8 1.8	13,935 15,109
1350	31	10	15	0.8	15,394	40	20	22	1.7	16,061	44	20	24	1.7	16,106
1400	31	10	15	0.8	16,627	40	20	22	1.6	17,320	44	20	24	1.6	17,366
1450 1500	31 31	10 10	15 15	0.8 0.8	17,671 18,991	40 40	20 20	22 22	1.6 1.5	18,385 19,731	44 44	20 20	24 24	1.6 1.5	18,433 19,781
1600	31	10	15	0.7	21,512	40	20	22	1.4	22,299	44	20	24	1.4	22,352
1650	31	10	15	0.7	22,698	40	20	22	1.4	23,506	44	20	24	1.4	23,561
1700 1800	31 31	10 10	15 15	0.7 0.6	24,190 27,055	40 40	20 20	22 22	1.3 1.3	25,025 27,937	44 44	20 20	23 23	1.3 1.3	25,081 27,996
1900	31	10	15	0.6	30,018	40	20	22	1.2	30,946	44	20	23	1.2	31,009
1950	31	10	15	0.6	31,416	40	20	22	1.2	32,365	44	20	23	1.2	32,429
2000	31	10	15	0.6	33,168	40	20	21	1.1	34,143	44	20	23	1.1	34,209
2100 2200	31 31	10 10	15 14	0.5 0.5	36,474 39,938	40 40	20 20	21 21	1.1 1.0	37,497 41,007	44 44	20 20	23 23	1.1 1.0	37,565 41,079
2250	31	10	14	0.5	41,548	40	20	21	1.0	42,638	44	20	23	1.0	42,712
2300	31	10	14	0.5	43,558	40	20	21	1.0	44,675	44	20	23	1.0	44,750
2400 2500	31 31	10 10	14 14	0.5 0.5	47,336 51,271	40 40	20 20	21 21	1.0 0.9	48,500 52,482	44 44	20 20	23 23	1.0 0.9	48,578 52,563
2550	31	10	14	0.4	53,093	40	20	21	0.9	54,325	44	20	23	0.9	54,408
2600	31	10	14	0.4	55,363	40	20	21	0.9	56,621	44	20	23	0.9	56,706
2700 2800	31	10	14	0.4	59,612 64,018	40	20 20	21	0.8	60,917	44 44	20 20	23 22	0.8	61,005 65,461
2850	31 31	10 10	14 14	0.4 0.4	66,052	40 40	20	21 21	0.8 0.8	65,370 67,426	44	20	22	0.8 0.8	67,518
2900	31	10	14	0.4	68,581	40	20	21	0.8	69,981	44	20	22	0.8	70,075
3000	31	10	14	0.4	73,301	40	20	21	0.8	74,748	44	20	22	0.8	74,845
3100 3150	31 31	10 10	14 14	0.4 0.4	78,179 80,425	40 40	20 20	21 21	0.7 0.7	79,673 81,940	44 44	20 20	22 22	0.7 0.7	79,773 82,041
3200	31	10	14	0.4	83,213	40	20	21	0.7	84,754	44	20	22	0.7	84,857
3300	31	10	14	0.3	88,405	40	20	21	0.7	89,993	44	20	22	0.7	90,099
3400	31	10	14	0.3	93,753	40	20	20	0.7	95,388	44	20	22	0.7	95,498
3450 3600	31 31	10 10	14 14	0.3 0.3	96,211 104,922	40 40	20 20	20 20	0.7 0.6	97,868 106,651	44 44	20 20	22 22	0.7 0.6	97,979 106,767
3800	31	10	14	0.3	116,718	40	20	20	0.6	118,542	44	20	22	0.6	118,664
4000	31	10	14	0.3	129,143	40	20	20	0.6	131,061	44	20	22	0.6	131,190

Recommended sizes Further possible sizes

Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -66 %; lateral displacement: -50 %; angular movement: -66 %. When the axial compression and extension is changed to the mean value, it is possible to increase the angular movement

(for values see type U110F). In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type U120A or U123A.

					Install	ation le	ngth (L	_{-E}) at de	sign pre	essure					
	up to 10	bar $L_E =$	300 mm					350 mm			up to 10	bar $L_E =$	400 mm		
						higher pr	essures o	n request							
	Move	ement		Α .		Move	ment		Α.		Move	ment		Α.	
*	mm mm	±mm	₩ ±°	Cm ²	*	mm mm	±mm	±°	cm ²	*	mm mm	±mm	±°	cm ²	Ø
53	31	39	31.8	353	69	43	53	40.7	491	78	53	62	46.7	616	100
53	31	39	26.4	441	69	43	51	34.5	594	78	53	60	40.3	731	125
53 53	31 31	38 37	22.5 19.5	539 670	69 69	43 43	51 50	29.8 26.2	707 855	78 78	53 53	59 58	35.2 31.2	855 1,018	150 175
53	31	37	17.2	765	69	43	49	23.3	962	78 78	53	58	27.9	1,134	200
53	31	36	13.9	1,029	69	43	48	19.0	1,257	78	53	57	23.0	1,452	250
53	31	36	11.7	1,346	69	43	48	16.0	1,605	78	53	56	19.5	1,825	300
53 53	31 31	35 35	10.0	1,713	69	43	47 46	13.8	2,003	78 78	53 53	55 54	16.8	2,248 2,660	350 400
53	31	35 34	8.8 7.8	2,075 2,507	69 69	43 43	46 46	12.1 10.8	2,393 2,856	78 78	53	54 54	14.8 13.3	3,147	450
53	31	34	7.1	2,971	69	43	45	9.8	3,349	78	53	53	12.0	3,664	500
53	31	34	6.4	3,442	69	43	45	8.9	3,848	78	53	53	10.9	4,185	550
53	31	33	5.9	4,015	69	43	45	8.2	4,453	78	53	52	10.0	4,815	600
53 53	31 31	33 33	5.4 5.1	4,560 5,230	69 69	43 43	44 44	7.5 7.0	5,027 5,728	78 78	53 53	52 52	9.3 8.6	5,411 6,138	650 700
53	31	33	4.7	5,836	69	43	44	6.5	6,362	78	53	51	8.0	6,793	750
53	31	33	4.4	6,604	69	43	43	6.1	7,163	78	53	51	7.5	7,620	800
53	31	32	4.2	7,268	69	43	43	5.8	7,854	78	53	51	7.1	8,332	850
53	31	32	3.9	8,123	69	43	43	5.5	8,742	78	53	50	6.7	9,246	900
53 53	31 31	32 32	3.7 3.5	8,858 9,799	69 69	43 43	43 43	5.2 4.9	9,503 10,477	78 78	53 53	50 50	6.4 6.1	10,029 11,029	950 1000
53	31	32	3.4	10,605	69	43	42	4.7	11,310	78	53	50	5.8	11,882	1050
53	31	32	3.2	11,652	69	43	42	4.5	12,390	78	53	49	5.5	12,989	1100
53	31	32	3.1	12,509	69	43	42	4.3	13,273	78	53	49	5.3	13,893	1150
53	31	31	3.0	13,623	69	43	42	4.1	14,420	78	53	49	5.0	15,066	1200
53 53	31 31	31 31	2.8 2.7	14,569 15,770	69 69	43 43	42 42	3.9 3.8	15,394 16,627	78 78	53 53	49 49	4.8 4.7	16,061 17,320	1250 1300
53	31	31	2.6	16,787	69	43	41	3.6	17,671	78	53	49	4.5	18,385	1350
53	31	31	2.5	18,074	69	43	41	3.5	18,991	78	53	48	4.3	19,731	1400
53	31	31	2.4	19,162	69	43	41	3.4	20,106	78	53	48	4.2	20,867	1450
53 53	31 31	31 31	2.4	20,536 23,154	69	43 43	41 41	3.3 3.1	21,512	78 78	53 53	48 48	4.0	22,299 25,025	1500 1600
53	31	31	2.2 2.2	24,384	69 69	43	41	3.0	24,190 25,447	78 78	53	40 48	3.8 3.7	26,302	1650
53	31	30	2.1	25,930	69	43	41	2.9	27,026	78	53	48	3.6	27,907	1700
53	31	30	2.0	28,893	69	43	40	2.7	30,049	78	53	47	3.4	30,978	1800
53	31	30	1.9	31,952	69	43	40	2.6	33,168	78	53	47	3.2	34,143	1900
53 53	31 31	30 30	1.8 1.8	33,394 35,199	69 69	43 43	40 40	2.5 2.5	34,636 36,474	78 78	53 53	47 47	3.1 3.0	35,633 37,497	1950 2000
53	31	30	1.7	38,603	69	43	40	2.3	39,938	78	53	47	2.9	41,007	2100
53	31	30	1.6	42,164	69	43	40	2.2	43,558	78	53	46	2.8	44,675	2200
53	31	30	1.6	43,818	69	43	40	2.2	45,239	78	53	46	2.7	46,377	2250
53 53	31 31	30 29	1.5 1.5	45,882 49,757	69 69	43 43	40 39	2.1 2.1	47,336 51 271	78 78	53 53	46 46	2.6 2.5	48,500 52,482	2300 2400
53	31	29 29	1.4	53,789	69	43	39	2.1	51,271 55,363	78 78	53 53	46	2.5	56,621	2500
53	31	29	1.4	55,655	69	43	39	1.9	57,256	78	53	46	2.4	58,535	2550
53	31	29	1.4	57,979	69	43	39	1.9	59,612	78	53	46	2.3	60,917	2600
53	31	29	1.3	62,325	69	43	39	1.8	64,018	78	53	46	2.2	65,370	2700
53 53	31 31	29 29	1.3 1.2	66,829 68,906	69 69	43 43	39 39	1.8 1.7	68,581 70,686	78 78	53 53	45 45	2.2 2.1	69,981 72,107	2800 2850
53	31	29 29	1.2	71,489	69	43	39	1.7	70,686	78 78	53 53	45 45	2.1	74,748	2900
53	31	29	1.2	76,307	69	43	39	1.6	78,179	78	53	45	2.0	79,673	3000
53	31	29	1.1	81,282	69	43	38	1.6	83,213	78	53	45	2.0	84,754	3100
53	31	29	1.1	83,571	69	43	38	1.6	85,530	78	53	45	1.9	87,092	3150
53 53	31 31	29 29	1.1 1.1	86,413 91,702	69 69	43 43	38 38	1.5 1.5	88,405 93,753	78 78	53 53	45 45	1.9 1.8	89,993 95,388	3200 3300
53	31	29	1.0	97,148	69	43	38	1.5	99,259	78 78	53	45	1.8	100,941	3400
53	31	29	1.0	99,650	69	43	38	1.4	101,788	78	53	45	1.8	103,491	3450
53	31	28	1.0	108,511	69	43	38	1.4	110,741	78	53	44	1.7	112,518	3600
53	31	28	0.9	120,503	69	43	38	1.3	122,852	78	53	44	1.6	124,723	3800
53	31	28	0.9	133,123	69	43	38	1.2	135,591	78	53	44	1.5	137,556	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

					Install	ation le	ngth (L	_E) at de	sign pro	essure					
		up to 10	bar $L_E =$	150 mm					200 mm			up to 10	bar $L_E =$	250 mm	
									n request						
α	Lal	Move	ment	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	Move	ment	101	A	Lal	Move	ment	101	A
Ø	*		R)			***		R.J			*				
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100 125	31 31	3	19 19	11.3 9.1	177 241	40 40	7 7	28 28	21.8 17.7	254 330	44 44	7 7	30 30	21.8 17.7	260 337
150	31	3	18	7.6	314	40	7	27	14.9	415	44	7	29	14.9	423
175	31	3	18	6.5	415	40	7	27	12.9	531	44	7	29	12.9	539
200 250	31 31	3	18 18	5.7 4.6	491 707	40 40	7 7	26 26	11.3 9.1	616 855	44 44	7 7	29 28	11.3 9.1	625 866
300	31	3	17	3.8	973	40	7	26	7.6	1,146	44	7	27	7.6	1,158
350	31	3	17	3.3	1,288	40	7	25	6.5	1,486	44	7	27	6.5	1,500
400 450	31 31	3	17 17	2.9 2.5	1,605 1,987	40 40	7 7	25 25	5.7 5.1	1,825 2,231	44 44	7 7	27 26	5.7 5.1	1,840 2,248
500	31	3	17	2.3	2,402	40	7	24	4.6	2,669	44	7	26	4.6	2,248
550	31	3	16	2.1	2,827	40	7	24	4.2	3,117	44	7	26	4.2	3,137
600	31	3	16	1.9	3,349	40	7	24	3.8	3,664	44	7	26	3.8	3,685
650 700	31 31	3	16 16	1.8 1.6	3,848 4,465	40 40	7 7	24 24	3.5 3.3	4,185 4,827	44 44	7 7	26 25	3.5 3.3	4,208 4,852
750	31	3	16	1.5	5,027	40	7	23	3.1	5,411	44	7	25	3.1	5,437
800	31	3	16	1.4	5,741	40	7	23	2.9	6,151	44	7	25	2.9	6,179
850 900	31 31	3	16 16	1.3 1.3	6,362 7,163	40 40	7 7	23 23	2.7 2.5	6,793 7,620	44 44	7 7	25 25	2.7 2.5	6,822 7,651
950	31	3	16	1.2	7,854	40	7	23	2.4	8,332	44	7	25	2.4	8,365
1000	31	3	16	1.1	8,742	40	7	23	2.3	9,246	44	7	25	2.3	9,280
1050 1100	31 31	3	15 15	1.1 1.0	9,503 10,496	40 40	7 7	23 23	2.2 2.1	10,029 11,047	44 44	7 7	25 24	2.2 2.1	10,064 11,085
1150	31	3	15	1.0	11,310	40	7	23	2.0	11,882	44	7	24	2	11,921
1200	31	3	15	1.0	12,370	40	7	22	1.9	12,969	44	7	24	1.9	13,009
1250 1300	31 31	3	15 15	0.9 0.9	13,273 14,420	40 40	7 7	22 22	1.8 1.8	13,893 15,066	44 44	7 7	24 24	1.8 1.8	13,935 15,109
1350	31	3	15	0.8	15,394	40	7	22	1.7	16,061	44	7	24	1.7	16,106
1400	31	3	15	0.8	16,627	40	7	22	1.6	17,320	44	7	24	1.6	17,366
1450 1500	31 31	3	15 15	0.8 0.8	17,671 18,991	40 40	7 7	22 22	1.6 1.5	18,385 19,731	44 44	7 7	24 24	1.6 1.5	18,433 19,781
1600	31	3	15	0.7	21,512	40	7	22	1.4	22,299	44	7	24	1.4	22,352
1650	31	3	15	0.7	22,698	40	7	22	1.4	23,506	44	7	24	1.4	23,561
1700 1800	31 31	3	15 15	0.7 0.6	24,190 27,055	40 40	7 7	22 22	1.3 1.3	25,025 27,937	44 44	7 7	23 23	1.3 1.3	25,081 27,996
1900	31	3	15	0.6	30,018	40	7	22	1.2	30,946	44	7	23	1.2	31,009
1950	31	3	15	0.6	31,416	40	7	22	1.2	32,365	44	7	23	1.2	32,429
2000	31	3	15 15	0.6	33,168 36,474	40	7	21	1.1	34,143	44	7	23 23	1.1	34,209 37,565
2100 2200	31 31	3 3	15 14	0.5 0.5	39,938	40 40	7 7	21 21	1.1 1.0	37,497 41,007	44 44	7 7	23	1.1 1	41,079
2250	31	3	14	0.5	41,548	40	7	21	1.0	42,638	44	7	23	1	42,712
2300 2400	31 31	3 3	14 14	0.5 0.5	43,558 47,336	40 40	7 7	21 21	1.0 1.0	44,675 48,500	44 44	7 7	23 23	1 1	44,750 48,578
2500	31	3	14	0.5	51,271	40	7	21	0.9	52,482	44	7	23	0.9	52,563
2550	31	3	14	0.4	53,093	40	7	21	0.9	54,325	44	7	23	0.9	54,408
2600 2700	31 31	3 3	14 14	0.4 0.4	55,363 59,612	40 40	7 7	21 21	0.9 0.8	56,621 60,917	44 44	7 7	23 23	0.9 0.8	56,706 61,005
2800	31	3	14	0.4	64,018	40	7	21	0.8	65,370	44	7	22	0.8	65,461
2850	31	3	14	0.4	66,052	40	7	21	0.8	67,426	44	7	22	0.8	67,518
2900	31	3	14	0.4	68,581	40	7	21	0.8	69,981	44	7	22	0.8	70,075
3000 3100	31 31	3 3	14 14	0.4 0.4	73,301 78,179	40 40	7 7	21 21	0.8 0.7	74,748 79,673	44 44	7 7	22 22	0.8 0.7	74,845 79,773
3150	31	3	14	0.4	80,425	40	7	21	0.7	81,940	44	7	22	0.7	82,041
3200	31	3	14	0.4	83,213	40	7	21	0.7	84,754	44	7	22	0.7	84,857
3300 3400	31 31	3	14 14	0.3 0.3	88,405 93,753	40 40	7 7	21 20	0.7 0.7	89,993 95,388	44 44	7 7	22 22	0.7 0.7	90,099 95,498
3450	31	3	14	0.3	96,211	40	7	20	0.7	97,868	44	7	22	0.7	97,979
3600	31	3	14	0.3	104,922	40	7	20	0.6	106,651	44	7	22	0.6	106,767
3800 4000	31 31	3 3	14 14	0.3 0.3	116,718 129,143	40 40	7 7	20 20	0.6 0.6	118,542 131,061	44 44	7 7	22 22	0.6 0.6	118,664 131,190

Recommended sizes
Further possible sizes

Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. When axial compression and extension are changed to the mean value, it is possible to increase the angular movement (for values see type U111F).

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29).

For larger movements see type U121A or U124A.

					Install	ation le	ngth (L	_E) at de	sign pr	essure					
	up to 10	bar L ∈ =	300 mm			up to 10	bar $L_E =$	350 mm			up to 10	bar L ₌ =	400 mm		
						higher pr	ressures o	n request							
	Move	ment		. А .		Move	ement		Α.		Move	ment		. A .	
► Mm	mm	±mm	±°	cm ²	™ mm	mm mm	±mm	±°	cm ²	► Mm	★ mm	±mm	±°	cm ²	Ø
53	10	39	31.8	353	69	14	53	40.7	491	78	17	62	46.7	616	100
53 53	10 10	39 38	26.4 22.5	441 539	69 69	14 14	51 51	34.5 29.8	594 707	78 78	17 17	60 59	40.3 35.2	731 855	125 150
53	10	38 37	19.5	670	69	14	50	29.8	855	78 78	17	59 58	31.2	1,018	175
53	10	37	17.2	765	69	14	49	23.3	962	78	17	58	27.9	1,134	200
53	10	36	13.9	1,029	69	14	48	19	1,257	78	17	57	23	1,452	250
53 53	10 10	36 35	11.7 10	1,346 1,713	69 69	14 14	48 47	16 13.8	1,605 2,003	78 78	17 17	56 55	19.5 16.8	1,825 2,248	300 350
53	10	35	8.8	2,075	69	14	46	12.1	2,393	78	17	54	14.8	2,660	400
53	10	34	7.8	2,507	69	14	46	10.8	2,856	78	17	54	13.3	3,147	450
53	10	34	7.1	2,971	69	14	45	9.8	3,349	78	17	53	12	3,664	500
53 53	10 10	34 33	6.4 5.9	3,442 4,015	69 69	14 14	45 45	8.9 8.2	3,848 4,453	78 78	17 17	53 52	10.9 10	4,185 4,815	550 600
53	10	33	5.4	4,560	69	14	44	7.5	5,027	78	17	52	9.3	5,411	650
53	10	33	5.1	5,230	69	14	44	7	5,728	78	17	52	8.6	6,138	700
53	10	33	4.7	5,836	69	14	44	6.5	6,362	78	17	51	8	6,793	750
53 53	10 10	33 32	4.4 4.2	6,604 7,268	69 69	14 14	43 43	6.1 5.8	7,163 7,854	78 78	17 17	51 51	7.5 7.1	7,620 8,332	800 850
53	10	32	3.9	8,123	69	14	43	5.5	8,742	78	17	50	6.7	9,246	900
53	10	32	3.7	8,858	69	14	43	5.2	9,503	78	17	50	6.4	10,029	950
53	10	32	3.5	9,799	69	14	43	4.9	10,477	78	17	50	6.1	11,029	1000
53 53	10 10	32 32	3.4 3.2	10,605 11,652	69 69	14 14	42 42	4.7 4.5	11,310 12,390	78 78	17 17	50 49	5.8 5.5	11,882 12,989	1050 1100
53	10	32	3.1	12,509	69	14	42	4.3	13,273	78	17	49	5.3	13,893	1150
53	10	31	3	13,623	69	14	42	4.1	14,420	78	17	49	5	15,066	1200
53	10	31	2.8	14,569	69	14	42	3.9	15,394	78	17	49	4.8	16,061	1250
53 53	10 10	31 31	2.7 2.6	15,770 16,787	69 69	14 14	42 41	3.8 3.6	16,627 17,671	78 78	17 17	49 49	4.7 4.5	17,320 18,385	1300 1350
53	10	31	2.5	18,074	69	14	41	3.5	18,991	78	17	48	4.3	19,731	1400
53	10	31	2.4	19,162	69	14	41	3.4	20,106	78	17	48	4.2	20,867	1450
53	10	31	2.4	20,536	69	14	41	3.3	21,512	78	17	48	4	22,299	1500
53 53	10 10	31 31	2.2 2.2	23,154 24,384	69 69	14 14	41 41	3.1 3	24,190 25,447	78 78	17 17	48 48	3.8 3.7	25,025 26,302	1600 1650
53	10	30	2.1	25,930	69	14	41	2.9	27,026	78	17	48	3.6	27,907	1700
53	10	30	2	28,893	69	14	40	2.7	30,049	78	17	47	3.4	30,978	1800
53 53	10 10	30 30	1.9 1.8	31,952 33,394	69 69	14 14	40 40	2.6 2.5	33,168 34,636	78 78	17 17	47 47	3.2 3.1	34,143 35,633	1900 1950
53	10	30	1.8	35,199	69	14	40	2.5	36,474	78	17	47	3.1	37,497	2000
53	10	30	1.7	38,603	69	14	40	2.3	39,938	78	17	47	2.9	41,007	2100
53	10	30	1.6	42,164	69	14	40	2.2	43,558	78	17	46	2.8	44,675	2200
53 53	10 10	30 30	1.6 1.5	43,818 45,882	69 69	14 14	40 40	2.2 2.1	45,239 47,336	78 78	17 17	46 46	2.7 2.6	46,377 48,500	2250 2300
53	10	29	1.5	49,757	69	14	39	2.1	51,271	78	17	46	2.5	52,482	2400
53	10	29	1.4	53,789	69	14	39	2	55,363	78	17	46	2.4	56,621	2500
53	10	29	1.4	55,655	69 60	14	39	1.9	57,256	78 79	17 17	46 46	2.4	58,535	2550
53 53	10 10	29 29	1.4 1.3	57,979 62,325	69 69	14 14	39 39	1.9 1.8	59,612 64,018	78 78	17 17	46 46	2.3 2.2	60,917 65,370	2600 2700
53	10	29	1.3	66,829	69	14	39	1.8	68,581	78	17	45	2.2	69,981	2800
53	10	29	1.2	68,906	69	14	39	1.7	70,686	78	17	45	2.1	72,107	2850
53 53	10	29	1.2	71,489	69 60	14	39	1.7	73,301	78 79	17 17	45 45	2.1	74,748	2900
53	10 10	29 29	1.2 1.1	76,307 81,282	69 69	14 14	39 38	1.6 1.6	78,179 83,213	78 78	17 17	45 45	2 2	79,673 84,754	3000 3100
53	10	29	1.1	83,571	69	14	38	1.6	85,530	78	17	45	1.9	87,092	3150
53	10	29	1.1	86,413	69	14	38	1.5	88,405	78	17	45	1.9	89,993	3200
53	10 10	29	1.1	91,702	69	14	38	1.5	93,753	78 79	17 17	45 45	1.8	95,388	3300
53 53	10 10	29 29	1 1	97,148 99,650	69 69	14 14	38 38	1.4 1.4	99,259 101,788	78 78	17 17	45 45	1.8 1.8	100,941 103,491	3400 3450
53	10	28	1	108,511	69	14	38	1.4	110,741	78	17	44	1.7	112,518	3600
53	10	28	0.9	120,503	69	14	38	1.3	122,852	78	17	44	1.6	124,723	3800
53	10	28	0.9	133,123	69	14	38	1.2	135,591	78	17	44	1.5	137,556	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

					Install	allation length (L_E) at design pressure up to 10 bar $L_E = 200 \text{ mm}$									
		up to 10	bar L _E =	150 mm								up to 10	bar L _E =	250 mm	
		Mayra	mont						n request			Mayır	mont		
Ø	IAI	IMOVE	ement	1~/	A	IAI	IVIOVE	ement	\~/	A	اما	IVIOVE	ement	1~/	A
\wp						*					*				
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100	20	2	18	8.0	150	26	6	27	19.8	222	29	6	29	19.8	232
125 150	20 20	2	18 17	6.4 5.3	209 278	26 26	6 6	26 26	16.1 13.5	293 373	29 29	6 6	29 28	16.1 13.5	305 387
175	20	2	17	4.6	373	26	6	26	11.6	483	29	6	28	11.6	499
200	20	2	17	4.0	445	26	6	25	10.2	564	29	6	28	10.2	581
250 300	20 20	2	16 16	3.2 2.7	651 908	26 26	6 6	25 24	8.2 6.8	794 1,075	29 29	6 6	27 27	8.2 6.8	814 1,099
350	20	2	16	2.3	1,213	26	6	24	5.9	1,405	29	6	26	5.9	1,432
400	20	2	16	2.0	1,521	26	6	24	5.1	1,735	29	6	26	5.1	1,765
450	20	2	16	1.8	1,893	26	6	23	4.6	2,132	29	6	26	4.6	2,165
500 550	20	2	15 15	1.6 1.5	2,299 2,715	26 26	6 6	23 23	4.1 3.7	2,561 3,000	29 29	6 6	25 25	4.1 3.7	2,597 3,039
600	20	2	15	1.3	3,227	26	6	23	3.4	3,536	29	6	25	3.4	3,578
650	20	2	15	1.2	3,718	26	6	23	3.2	4,049	29	6	25	3.2	4,094
700 750	20 20	2 2	15 15	1.1 1.1	4,324 4,877	26 26	6 6	23 22	2.9 2.7	4,681 5,255	29 29	6 6	25 24	2.9 2.7	4,729 5,307
800	20	2	15	1.0	5,581	26	6	22	2.6	5,986	29	6	24	2.6	6,041
850	20	2	15	0.9	6,193	26	6	22	2.4	6,619	29	6	24	2.4	6,677
900	20	2	15	0.9	6,984	26	6	22	2.3	7,436	29	6	24	2.3	7,497
950 1000	20 20	2 2	15 15	0.8 0.8	7,667 8,544	26 26	6 6	22 22	2.2 2.1	8,139 9,043	29 29	6 6	24 24	2.2 2.1	8,203 9,110
1050	20	2	14	0.8	9,297	26	6	22	2.0	9,817	29	6	24	2	9,887
1100	20	2	14	0.7	10,279	26	6	22	1.9	10,825	29	6	24	1.9	10,899
1150 1200	20 20	2 2	14 14	0.7 0.7	11,085 12,135	26 26	6 6	22 21	1.8 1.7	11,652 12,728	29 29	6 6	24 23	1.8 1.7	11,728 12,808
1250	20	2	14	0.7	13,029	26	6	21	1.6	13,643	29	6	23	1.7	13,726
1300	20	2	14	0.6	14,166	26	6	21	1.6	14,806	29	6	23	1.6	14,892
1350	20	2	14	0.6	15,131	26	6	21	1.5	15,792	29	6	23	1.5	15,881
1400 1450	20 20	2 2	14 14	0.6 0.6	16,354 17,390	26 26	6 6	21 21	1.5 1.4	17,041 18,098	29 29	6 6	23 23	1.5 1.4	17,134 18,194
1500	20	2	14	0.5	18,699	26	6	21	1.4	19,433	29	6	23	1.4	19,532
1600	20	2	14	0.5	21,201	26	6	21	1.3	21,983	29	6	23	1.3	22,088
1650 1700	20 20	2 2	14 14	0.5 0.5	22,379 23,861	26 26	6 6	21 21	1.2 1.2	23,181 24,689	29 29	6 6	23 23	1.2 1.2	23,289 24,801
1800	20	2	14	0.3	26,706	26	6	21	1.1	27,582	29	6	23	1.1	27,700
1900	20	2	14	0.4	29,651	26	6	21	1.1	30,573	29	6	22	1.1	30,698
1950	20	2	14	0.4	31,040	26	6	21	1.1	31,984	29	6	22	1.1	32,111
2000 2100	20 20	2 2	14 14	0.4 0.4	32,781 36,069	26 26	6 6	21 20	1.0 1.0	33,751 37,086	29 29	6 6	22 22	1 1	33,882 37,223
2200	20	2	14	0.4	39,514	26	6	20	0.9	40,578	29	6	22	0.9	40,721
2250	20	2	14	0.4	41,115	26	6	20	0.9	42,200	29	6	22	0.9	42,346
2300 2400	20 20	2 2	13	0.3	43,116	26 26	6	20 20	0.9	44,227	29	6 6	22	0.9 0.9	44,376 48,188
2500	20	2	13 13	0.3 0.3	46,875 50,791	26	6 6	20	0.9 0.8	48,033 51,996	29 29	6	22 22	0.9	52,158
2550	20	2	13	0.3	52,604	26	6	20	0.8	53,831	29	6	22	0.8	53,995
2600	20	2	13	0.3	54,864	26	6	20	0.8	56,116	29	6	22	0.8	56,284
2700 2800	20 20	2 2	13 13	0.3 0.3	59,094 63,481	26 26	6 6	20 20	0.8 0.7	60,393 64,828	29 29	6 6	22 22	0.8 0.7	60,568 65,008
2850	20	2	13	0.3	65,506	26	6	20	0.7	66,874	29	6	22	0.7	67,058
2900	20	2	13	0.3	68,025	26	6	20	0.7	69,419	29	6	22	0.7	69,606
3000 3100	20 20	2 2	13 13	0.3 0.3	72,727 77,585	26 26	6 6	20 20	0.7 0.7	74,168 79,073	29 29	6 6	22 21	0.7 0.7	74,361 79,273
3150	20	2	13	0.3	79,823	26	6	20	0.7	81,332	29	6	21	0.7	79,273 81,534
3200	20	2	13	0.3	82,601	26	6	20	0.6	84,136	29	6	21	0.6	84,342
3300	20	2	13	0.2	87,773	26	6	20	0.6	89,356	29	6	21	0.6	89,568
3400 3450	20 20	2 2	13 13	0.2 0.2	93,103 95,553	26 26	6 6	20 20	0.6 0.6	94,733 97,203	29 29	6 6	21 21	0.6 0.6	94,951 97,425
3600	20	2	13	0.2	104,234	26	6	19	0.6	105,958	29	6	21	0.6	106,188
3800	20	2	13	0.2	115,993	26	6	19	0.5	117,811	29	6	21	0.5	118,054
4000	20	2	13	0.2	128,380	26	6	19	0.5	130,292	29	6	21	0.5	130,548

Recommended sizes Further possible sizes

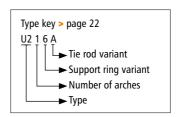
Reduction of movement for expansion joints with PTFE lining: axial compression: -0 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. When the axial compression and extension is changed to the mean value, it is possible to increase the angular movement (for values see type U112F). In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type U122A or U125A.

					Install	ation le	ngth (L	_{-E}) at de	sign pre	essure					
	up to 10	bar L _E =	300 mm			up to 10	bar L _E =	350 mm			up to 10	bar L _E =	400 mm		
						higher pr	essures o	n request							
1 - 1	Move	ment		Α.	1	Move	ment	\ <i>(</i>	Α.	1 - 1	Move	ment		Α.	
→ Mm	Em mm	±mm	±°	cm ²	→	E mm	±mm	±°	cm ²	→	** mm	±mm	±°	cm ²	Ø
35	9	38	30.1	320	46	13	51	38	423	51	16	60	44.4	539	100
35	9	38	24.9	405	46	13	50	32	519	51	16	59	38.1	647	125
35 35	9 9	37 36	21.1 18.3	499 625	46 46	13 13	49 48	27.5 24	625 765	51 51	16 16	58 57	33.2 29.2	765 919	150 175
35	9	36	16.2	716	46	13	48	24 21.3	866	51	16	56	26.1	1,029	200
35	9	35	13.1	973	46	13	47	17.3	1,146	51	16	55	21.4	1,333	250
35	9	35	10.9	1,282	46	13	46	14.6	1,479	51	16	54	18.1	1,691	300
35 35	9 9	34 34	9.4 8.3	1,640 1,995	46 46	13 13	45 45	12.6 11	1,863 2,240	51 51	16 16	53 53	15.6 13.8	2,099 2,498	350 400
35	9	33	7.3	2,419	46	13	44	9.8	2,688	51	16	52	12.3	2,438	450
35	9	33	6.6	2,875	46	13	44	8.9	3,167	51	16	52	11.1	3,473	500
35	9	33	6	3,339	46	13	44	8.1	3,653	51	16	51	10.1	3,982	550
35 35	9 9	33 32	5.5 5.1	3,904	46 46	13 13	43 43	7.4 6.8	4,243 4,803	51 51	16 16	51 50	9.3 8.6	4,596 5 178	600 650
35 35	9	32 32	5.1 4.7	4,441 5,102	46 46	13	43 43	6.8 6.4	4,803 5,489	51 51	16 16	50 50	8.6 8	5,178 5,890	700
35	9	32	4.4	5,701	46	13	42	5.9	6,110	51	16	50	7.4	6,533	750
35	9	32	4.1	6,461	46	13	42	5.6	6,896	51	16	50	7	7,344	800
35	9	32	3.9	7,118	46	13	42	5.2	7,574	51	16	49	6.6	8,044	850
35 35	9 9	31 31	3.7 3.5	7,964 8,692	46 46	13 13	42 41	5 4.7	8,446 9,195	51 51	16 16	49 49	6.2 5.9	8,942 9,712	900 950
35	9	31	3.3	9,625	46	13	41	4.5	10,153	51	16	49	5.6	10,696	1000
35	9	31	3.2	10,423	46	13	41	4.2	10,973	51	16	48	5.3	11,537	1050
35	9	31	3	11,461	46	13	41	4.1	12,037	51	16	48	5.1	12,628	1100
35 35	9 9	31 31	2.9 2.8	12,311 13,417	46 46	13 13	41 41	3.9 3.7	12,908 14,040	51 51	16 16	48 48	4.9 4.7	13,519 14,677	1150 1200
35	9	31	2.6	14,356	46	13	40	3.6	15,001	51	16	46 48	4.7	15,659	1250
35	9	30	2.6	15,548	46	13	40	3.4	16,218	51	16	47	4.3	16,902	1300
35	9	30	2.5	16,559	46	13	40	3.3	17,250	51	16	47	4.2	17,955	1350
35	9	30	2.4	17,837	46	13	40	3.2	18,554	51	16 16	47	4	19,285	1400
35 35	9 9	30 30	2.3 2.2	18,918 20,283	46 46	13 13	40 40	3.1 3	19,656 21,047	51 51	16 16	47 47	3.9 3.7	20,409 21,825	1450 1500
35	9	30	2.1	22,885	46	13	40	2.8	23,697	51	16	47	3.5	24,522	1600
35	9	30	2	24,108	46	13	39	2.7	24,941	51	16	46	3.4	25,787	1650
35	9	30	2	25,645	46	13	39	2.6	26,504	51	16	46	3.3	27,377	1700
35 35	9 9	30 29	1.8 1.7	28,592 31,636	46 46	13 13	39 39	2.5 2.4	29,498 32,589	51 51	16 16	46 46	3.1 3	30,419 33,556	1800 1900
35	9	29	1.7	33,071	46	13	39	2.3	34,045	51	16	46	2.9	35,033	1950
35	9	29	1.7	34,867	46	13	39	2.2	35,867	51	16	46	2.8	36,881	2000
35	9	29	1.6	38,256	46	13	39	2.1	39,303	51	16	45	2.7	40,364	2100
35 35	9 9	29 29	1.5 1.5	41,801 43,447	46 46	13 13	38 38	2 2	42,895 44,563	51 51	16 16	45 45	2.6 2.5	44,003 45,692	2200 2250
35	9	29	1.4	45,503	46	13	38	1.9	46,645	51	16	45	2.5	47,800	2300
35	9	29	1.4	49,363	46	13	38	1.9	50,551	51	16	45	2.3	51,754	2400
35	9	29	1.3	53,379	46	13	38	1.8	54,615	51	16	45	2.2	55,864	2500
35 35	9 9	29 20	1.3	55,238 57,553	46 46	13 13	38 38	1.8	56,495 58,836	51 51	16 16	45 44	2.2 2.2	57,766 60 132	2550 2600
35	9	29 28	1.3 1.2	57,553 61,883	46 46	13 13	38 38	1.7 1.7	58,836 63,213	51	16 16	44 44	2.2	60,132 64,557	2700
35	9	28	1.2	66,371	46	13	38	1.6	67,748	51	16	44	2	69,139	2800
35	9	28	1.2	68,442	46	13	37	1.6	69,840	51	16	44	2	71,252	2850
35	9	28	1.1	71,016	46	13	37	1.5	72,440	51	16	44	1.9	73,878	2900
35 35	9	28 28	1.1 1.1	75,818 80,777	46 46	13 13	37 37	1.5 1.4	77,289 82,295	51 51	16 16	44 44	1.9 1.8	78,775 83,828	3000 3100
35	9	28	1.1	83,060	46	13	37	1.4	84,599	51	16	44	1.8	86,153	3150
35	9	28	1	85,893	46	13	37	1.4	87,459	51	16	44	1.8	89,038	3200
35	9	28	1	91,166	46	13	37	1.4	92,779	51	16	44	1.7	94,406	3300
35 35	9 9	28	1	96,597 99,091	46 46	13 13	37 37	1.3 1.3	98,256 100,772	51 51	16 16	43	1.7	99,930 102,467	3400 3450
35 35	9	28 28	1 0.9	107,928	46 46	13	37 37	1.3	100,772	51 51	16	43 43	1.6 1.6	111,450	3600
35	9	28	0.9	119,888	46	13	37	1.2	121,736	51	16	43	1.5	123,599	3800
35	9	27	0.8	132,477	46	13	36	1.1	134,419	51	16	43	1.4	136,376	4000

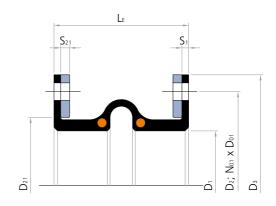
The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

Installation of a rubber expansion joint \varnothing 1,600 mm to the pump nozzle, 16 bar design pressure

FPM rubber joint \varnothing 300 mm for 1 bar operating pressure and 180° C, installed on an ash chute



Single arch reducer made from NBR rubber with embedded vacuum ring, type U112A \varnothing 1,400 mm / \varnothing 1,200 mm, design pressure 5 bar


U216A Ø 100 - 4,000 mm

> Type U216A

Cross section U216A

Universal expansion joint with one arch

Design: Thick-walled, single arch rubber bellows with full faced rubber

flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, with support rings at the arch foot and split backing flanges. In compliance with PED 2014/68/EU, FSA Technical Handbook and

ASTM F1123 - 87.

Diameters: \emptyset 100 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 250$ to 350 mm (> page 84)

Custom length on request

Pressure: Up to 25 bar depending on diameter and length

Vacuum-proof

Movement: For axial, lateral and angular movements

→ **† † † † †)** (> page 84)

Spring rate: The embedded support rings and reinforcements generate large

spring rates

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Multi-part, round backing flanges with clearance holes

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

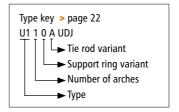
Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:

					Install	Ilation length (L_E) at design pressure up to 10 bar L_E = 300 mm									
		up to 10	bar $L_E =$	250 mm								up to 10	bar L _E =	350 mm	
									n request						
α	Lal	Move	ment	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	Move	ement	101	A	اما	Move	ment	101	A
Ø	+1,7		R X			+1,7		R X			-		$\mathbb{R}^{\frac{1}{2}}$		
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100	35	15	27	16.7	346	41	21	35	22.8	460	47	24	40	25.6	573
125 150	35 35	15 15	25 25	13.5 11.3	434 531	41 41	21 21	34 33	18.6 15.6	560 670	47 47	24 24	39 37	21 17.7	683 804
175	35	15	24	9.7	661	41	21	32	13.5	814	47	24	36	15.3	962
200	35	15	23	8.5	755	41	21	31	11.9	919	47	24	35	13.5	1,075
250 300	35 35	15 15	22 22	6.8 5.7	1,018 1,333	41 41	21 21	30 29	9.5 8.0	1,207 1,548	47 47	24 24	34 33	10.9 9.1	1,385 1,750
350	35	15	21	4.9	1,698	41	21	28	6.8	1,940	47	24	32	7.8	2,165
400	35	15	21	4.3	2,059	41	21	27	6.0	2,324	47	24	31	6.8	2,570
450	35	15	20	3.8	2,489	41	21	27	5.3	2,781	47	24	31	6.1	3,048
500 550	35 35	15 15	20 19	3.4 3.1	2,951 3,421	41 41	21 21	26 26	4.8 4.4	3,267 3,761	47 47	24 24	30 29	5.5 5	3,557 4,072
600	35	15	19	2.9	3,993	41	21	25	4.0	4,359	47	24	29	4.6	4,693
650	35	15	19	2.6	4,536	41	21	25	3.7	4,927	47	24	29	4.2	5,281
700	35 35	15 15	19	2.5	5,204	41	21 21	25 24	3.4	5,621	47 47	24 24	28	3.9	5,999
750 800	35	15	18 18	2.3 2.1	5,809 6,576	41 41	21	24	3.2 3.0	6,249 7,044	47	24	28 28	3.7 3.4	6,648 7,466
850	35	15	18	2.0	7,238	41	21	24	2.8	7,729	47	24	27	3.2	8,171
900	35	15	18	1.9	8,091	41	21	24	2.7	8,610	47	24	27	3.1	9,076
950 1000	35 35	15 15	18 17	1.8 1.7	8,825 9,764	41 41	21 21	23 23	2.5 2.4	9,366 10,333	47 47	24 24	27 26	2.9 2.7	9,852 10,843
1050	35	15	17	1.7	10,568	41	21	23	2.4	11,159	47	24	26	2.7	11,690
1100	35	15	17	1.6	11,613	41	21	23	2.2	12,233	47	24	26	2.5	12,788
1150	35	15	17	1.5	12,469	41	21	23	2.1	13,110	47	24	26	2.4	13,685
1200 1250	35 35	15 15	17 17	1.4 1.4	13,581 14,527	41 41	21 21	22 22	2.0 1.9	14,250 15,218	47 47	24 24	26 25	2.3 2.2	14,849 15,837
1300	35	15	17	1.3	15,725	41	21	22	1.9	16,445	47	24	25	2.1	17,087
1350	35	15	17	1.3	16,742	41	21	22	1.8	17,483	47	24	25	2	18,146
1400	35	15	16	1.2	18,027	41	21	22	1.7	18,796	47	24	25	2	19,483
1450 1500	35 35	15 15	16 16	1.2 1.1	19,113 20,485	41 41	21 21	22 22	1.7 1.6	19,906 21,305	47 47	24 24	25 25	1.9 1.8	20,612 22,035
1600	35	15	16	1.1	23,100	41	21	21	1.5	23,970	47	24	24	1.7	24,745
1650	35	15	16	1.0	24,328	41	21	21	1.5	25,221	47	24	24	1.7	26,016
1700 1800	35 35	15 15	16 16	1.0 1.0	25,873 28,832	41 41	21 21	21 21	1.4 1.3	26,793 29,804	47 47	24 24	24 24	1.6 1.5	27,612 30,666
1900	35	15	16	0.9	31,889	41	21	21	1.3	32,910	47	24	24	1.4	33,816
1950	35	15	15	0.9	33,329	41	21	21	1.2	34,373	47	24	23	1.4	35,299
2000	35 35	15 15	15 15	0.9 0.8	35,133 38,533	41	21 21	20 20	1.2 1.1	36,204 39,655	47 47	24 24	23 23	1.4 1.3	37,154 40,649
2100 2200	35	15	15	0.8	42,091	41 41	21	20	1.1	43,263	47	24	23	1.2	44,301
2250	35	15	15	0.8	43,744	41	21	20	1.1	44,938	47	24	23	1.2	45,996
2300	35	15	15	0.7	45,806	41	21	20	1.0	47,028	47	24	23	1.2	48,111
2400 2500	35 35	15 15	15 15	0.7 0.7	49,678 53,707	41 41	21 21	20 20	1.0 1.0	50,950 55,030	47 47	24 24	23 22	1.1 1.1	52,077 56,200
2550	35	15	15	0.7	55,572	41	21	20	0.9	56,917	47	24	22	1.1	58,107
2600	35	15	15	0.7	57,893	41	21	19	0.9	59,266	47	24	22	1.1	60,481
2700	35	15	15	0.6	62,237	41	21	19	0.9	63,660	47	24	22	1	64,918
2800 2850	35 35	15 15	14 14	0.6 0.6	66,737 68,813	41 41	21 21	19 19	0.9 0.8	68,210 70,309	47 47	24 24	22 22	1 1	69,513 71,631
2900	35	15	14	0.6	71,394	41	21	19	0.8	72,918	47	24	22	0.9	74,264
3000	35	15	14	0.6	76,209	41	21	19	0.8	77,783	47	24	22	0.9	79,173
3100 3150	35 35	15 15	14 14	0.6 0.5	81,181 83,469	41 41	21 21	19 19	0.8 0.8	82,805 85,116	47 47	24 24	22 21	0.9 0.9	84,239 86,570
3200	35	15	14	0.5	86,309	41	21	19	0.8	87,984	47	24	21	0.9	89,462
3300	35	15	14	0.5	91,595	41	21	19	0.7	93,320	47	24	21	0.8	94,842
3400	35	15	14	0.5	97,038	41	21	19	0.7	98,813	47	24	21	0.8	100,379
3450 3600	35 35	15 15	14 14	0.5 0.5	99,538 108,395	41 41	21 21	19 18	0.7 0.7	101,336 110,270	47 47	24 24	21 21	0.8 0.8	102,922 111,924
3800	35	15	14	0.5	120,380	41	21	18	0.7	122,356	47	24	21	0.8	124,098
4000	35	15	14	0.4	132,993	41	21	18	0.6	135,070	47	24	21	0.7	136,900

Reduction of movement for expansion joints with filled arch: axial compression: -50 %; axial extension: -75 %; lateral displacement: -50 %; angular movement: -75 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29).



Rubber bellow \varnothing 1,600 mm of type U216A for a drinking water line

U110A UDJ Ø 80 - 4,000 mm

- Type U110A UDJ without vacuum ring
- > Type U111A UDJ with internal vacuum ring
- > Type U112A UDJ with embedded vacuum ring

Universal dismantling joint

Design:

Rubber expansion joints as dismantling joints play a decisive role in the design and layout of pipelines and valves. They are an essential aid during the installation and removal of pipe sections and piping equipment. Without a dismantling joint offering axial, lateral and angular adjustments, it is almost impossible to insert a valve exactly into a pipe section. Thanks to this all-directional adjustability, the valve can be fitted next to the dismantling joint, and the rubber expansion joint can compensate for installation tolerances prior to being securely connected to the mating flanges.

ditec's dismantling rubber expansion joints are specifically designed for self-retraction to facilitate access to piping and equipment as well as for unmatched ease of installation and subsequent removal. Only the rubber bellow with its close to unlimited medium compatibility is in contact with the fluid so that the use of costly stainless steel materials or special coatings are unnecessary.

Application:
Cooling water systems,
desalination plants,
drinking water supply,
plant constructions, flue
gas cleaning plants e. g.
in pipelines, on pumps,
as dismantling joints, on
condensers and vessels

Dismantling rubber expansion joints are high elastic, streamlined, have depending from expected installation tolerances or movements single or multiple wide archs with full faced rubber flanges or swivel flanges with sealing bulge, are designed to compensate all-directional movements, have a cycle life in the tens of millions, are constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Universal dismantling joints have light-weight restraints only capable to retract the expansion joints but not designed to take thrust forces of the bellow. Restraints must be loosened for operation and hydraulic testing.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 74–79)

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar absolute

Movement: For large axial, lateral and angular movements

For movement capabilities refer to type U110A (> page 74–79)

Spring rate: Axial and lateral spring rates (> page 296)

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

PTFE-lining: Firmly embedded against chemical attacks on the interior at the rubber bellows, available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 74–79)

Backing flanges

Design: Single-part, round backing flanges with several tie rod holder, support collar and clearance holes

Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

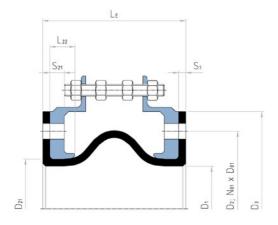
Protective shield or cover

Fire protective cover (> page 58)

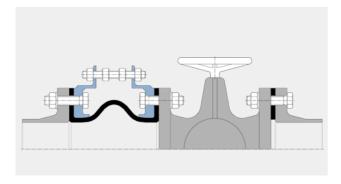
Flow liners: Cylindrical flow liner

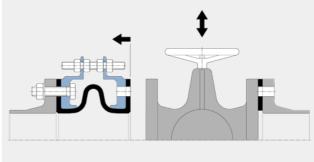
Conical flow liner

Telescoping flow liner (> page 57)


Filled arch:

Support rings


TYPE	Support rings		Vacuum ring	Pressure	Movement
U110A UDJ			None	Depending on the diameter up to 100 bar, vacuum stability on request	> page 74
U111A UDJ			Medium contact, inside the arch	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 76
U112A UDJ			No medium contact, embedded in the arch	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 78
Materials					
Stainless steel		Carbon s	steel, rubberised	Carbon steel, embedded	


Cross section U110A UDJ

Working principle of a dismantling joint

in operation for maintenance



Double arch EPDM rubber expansion joints with PTFE lining for GRP gas ducts of a sulphuric acid plant as dismantling joint

U110A A0 Ø 80 - 4,000 mm

- Type U110A AO without vacuum ring
- > Type U111A AO with internal vacuum ring
- > Type U112A AO with embedded vacuum ring

Universal single arch expansion joint with angular offset

Design:

Type U110A AO rubber expansion joints are manufactured with built-in angular offsets to accommodate non-standard construction site conditions. They provide ease of installation without compromising any performance capabilities. E.g. because of foundation or building settlements the replacement of long-term installed rubber expansion joints may require built-in offsets to accommodate non-standard site conditions. Due to relaxed installation the new expansion joint is capable to compensate further movements in the future.

High elastic, streamlined, single wide arch rubber bellows with full faced rubber flanges or swivel flanges with sealing bulge, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Tie rods can be externally or internally attached when the support structure or adjacent equipment have load limitations to take over the thrust forces of the expansion joint bellow under pressure. Application:
Cooling water systems,
desalination plants,
drinking water supply,
plant constructions e.g.
in pipelines, on pumps,
as dismantling joints, on
condensers and vessels

instructions at: www.ditec-adam.de/ en/contact

Diameters: \varnothing 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 74–79)

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar absolute

Movement: For large axial, lateral and angular movements

For approx. movement capabilities refer to type U110A (> page 74–79)

Spring rate: Axial and lateral spring rates (> page 296)

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

PTFE-lining: Firmly embedded against chemical attacks on the interior at the rubber bellows, available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 74–79)

Backing flanges

Design: Single-part, round backing flanges with support collar and clearance holes

Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

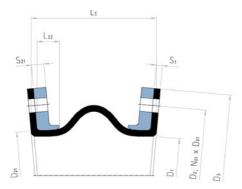
Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

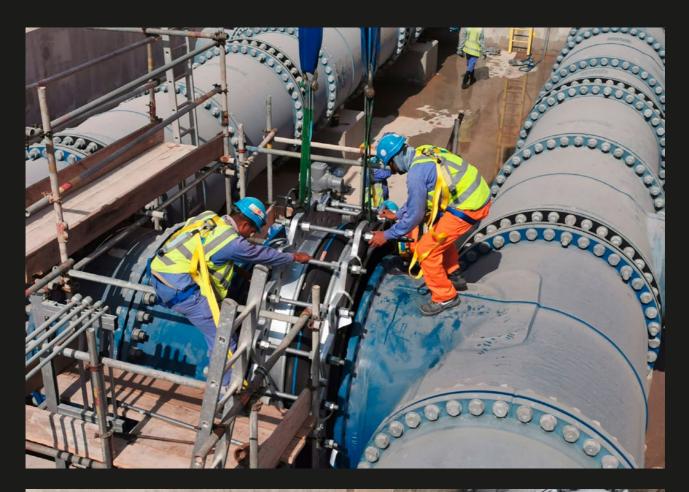
Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:

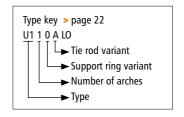


(> page 42)


Support rings

ТҮРЕ	Support rings	Vacuum ring	Pressure	Movement
U110A AO		None	Depending on the diameter up to 100 bar, vacuum stability on request	> page 74
U111A AO		Medium contact, inside the arch	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 76
U112A AO		No medium contact, embedded in the arch	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 78
Materials				
Stainless steel	Carbo	on steel, rubberised	Carbon steel, embedded	

Cross section U110A AO



Tied lateral rubber expansion joint with built in angular offset installed in a bypass drinking water line

U110A LO Ø 80 - 4,000 mm

- > Type U110A LO without vacuum ring
- > Type U111A LO with internal vacuum ring
- > Type U112A LO with embedded vacuum ring

Universal single arch expansion joint with lateral offset

Design:

Type U110A LO rubber expansion joints are manufactured with built-in lateral offsets to accommodate non-standard construction site conditions. They provide ease of installation without compromising any performance capabilities. E.g. because of foundation or building settlements the replacement of long-term installed rubber expansion joints may require built-in offsets to accommodate non-standard site conditions. Due to relaxed installation the new expansion joint is capable to compensate further movements in the future.

High elastic, streamlined, single wide arch rubber bellows with full faced rubber flanges or swivel flanges with sealing bulge, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Tie rods can be externally or internally attached when the support structure or adjacent equipment have load limitations to take over the thrust forces of the expansion joint bellow under pressure.

Diameters: \emptyset 80 to 4,000 mm, custom diameters possible

Length: Standard $L_F = 150$ to 400 mm (> page 74–79)

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

instructions at:
www.ditec-adam.de/

Movement: For large axial, lateral and angular movements

For approx. movement capabilities refer to type U110A (> page 74–79)

Spring rate: Axial and lateral spring rates (> page 296)

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

PTFE-lining: Firmly embedded against chemical attacks on the interior at the rubber bellows, available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 74–79)

Backing flanges

Design: Single-part, round backing flanges with support collar and clearance holes

Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

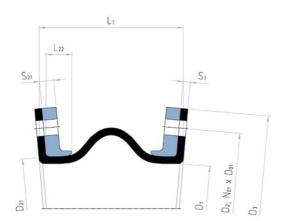
Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

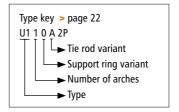
Telescoping flow liner (> page 57)


Filled arch:

Support rings

TYPE	Support rings	Vacuum ring	g	Pressure	Movement
U110A LO		None		Depending on the diameter up to 100 bar, vacuum stability on request	> page 74
U111A LO		Medium con	tact, inside the arch	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 76
U112A LO		No medium the arch	contact, embedded in	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 78
Materials					
Stainless steel	Ca	bon steel, rubberise	ed C	Carbon steel, embedded	

Cross section U110A LO



Rubber expansion joints with built in lateral offset to compensate pipeline misalignment

U110A 2P Ø 80 - 4,000 mm

- Type U110A 2P without vacuum ring
- > Type U111A 2P with internal vacuum ring
- > Type U112A 2P with embedded vacuum ring

Two ply testable rubber bellow

Design:

For critical services or when the rubber expansion joint reliability is utmost important two ply testable rubber bellows are an option for applications. In two ply testable bellows each bellow is designed for the full operating conditions. For this reason, bellows design incorporates a redundant pressure retaining ply combined with a leak detection hardware.

Typically the bellow is composed of two plies of a material that is capable of handling the full operating pressure alone. Both plies are vulcanized together in the flange. The expansion joint is also able to withstand vacuum with a support ring. The inner ply retains the pressure under normal circumstances. If the inner ply develops a leak, the outer ply then retains the pressure. If this happens the pressure between the plies is ported to a gauge that will then indicate a reading. This alerts personnel to take precautions to replace a failing bellows as soon as possible. The two ply testable rubber bellows also allows inspectors to pressure test the inner and outer ply during shutdowns.

Main benefits: early warning leak detection, two ply allow for 100% redundancy and the expansion joint will be working while a replacment can be arranged.

Application:
For refineries, chemical and pharmaceutical industry, ore dressing e.g. whenever critical media in pipelines, in pumps, to vessels or tanks are conveyed

High elastic, streamlined, single wide arch rubber bellows with full faced rubber flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical

Handbook and ASTM F1123 - 87.

Diameters: \varnothing 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 74–79)

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar absolute

Movement: For large axial, lateral and angular movements

For approx. movement capabilities refer to type U110A (> page 74–79)

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

100 Universal expansion joints with full faced rubber flange

Backing flanges

Design: Single-part, round backing flanges with support collar and clearance holes

Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

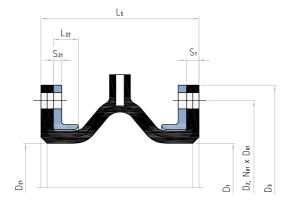
Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

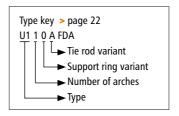

Conical flow liner

Telescoping flow liner (> page 57)

Support rings

TYPE	Support rings		Vacuum ring	Pressure	Movement
U110A 2P			None	Depending on the diameter up to 100 bar, vacuum stability on request	> page 74
U111A 2P			Medium contact, inside the arch	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 76
U112A 2P			No medium contact, embedded in the arch	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 78
Materials					
Stainless steel	(Carbon s	teel, rubberised	Carbon steel, embedded	

Cross section U110A 2P


Homogen vulcanized two ply testable rubber bellow of size \varnothing 300 mm made from FPM rubber for a chemical plant

B100 B110 U100A U110A FDA Ø 80 - 4,000 mm

Ø up to 4.000 x 4.000 mm Ø up to 6,000 x 3,000 mm

- > Type U110A FDA without vacuum ring
- > Type U112A FDA with embedded vacuum ring

FDA rubber expansion joint

Design:

High elastic, streamlined, cylindrical, single or multiple arch bellows with dead space free slip-on sleeve ends (type B100 and B110), full faced rubber flanges (type U100A and U110A) or Tri-clamp hygienic flange connection vulcanized to the rubber body, designed to compensate all directional movements, have a cycle life in the tens of millions, individually constructed depending from the service pressure and temperature with a high-grade leak-proof tube, single or multiple layers of fabric(s) and a seamless cover. Fixing accessories furnished according to end fitting such as clamps or backing flanges. Optional with embedded support ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Rubber bellows are individually mold-manufactured from single or multiple unvulcanized rubber sheets and appropriate elastomer laminated reinforcements and hot vulcanized afterwards to a homogenous expansion joint without seam or gluing. Standard internal surface of the bellow is smooth.

Large range of different foodstaff-compliant elastomers on stock individually chosen for the service medium, in conformity with food regulations according FDA or EU 1935/2004.

Tie rods can be externally or internally attached when the support structure or adjacent piping equipment have load limitations to take over the thrust forces of the expansion joint bellow under pressure.

Application:

Rubber expansion joints for applications in meat processing, dairy and bakery technology, chocolate and vegetable oil processing, beverage industry, brewery technology and pharmaceutical industry e.g. for pipelines, CIP systems, on pumps, fittings, apparatus and weighing containers

Request assembly instructions at: www.ditec-adam.de

Sizes: Ø 80 to 4,000 mm

 \square up to 4,000 x 4,000 mm or 6,000 x 3,000 mm

Custom sizes possible

Length: Standard $L_{\scriptscriptstyle E}=150$ to 400 mm

Custom length on request

Up to 100 bar depending on diameter and length Pressure:

Vacuum stability on request, with embedded vacuum ring up to 0.05 bar

absolute

Movement: For large axial, lateral and angular movements

For movement capabilities refer to the specific type

+ | + | + | + | + | + |

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

104 Universal expansion joints with full faced rubber flange

Backing flanges

Design: Single- or multi-part round or rectangular backing flanges with clearance or threaded

holes, depending from pressure with or without support collar. Optionally integral

backing flanges with tie rod holders

Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Clamps

Design: Depending on pressure and the diameter, endless clamp belt, screw thread belt, small

clamps or hinge bolt clamps. At higher pressures, 2 parallel clamps per side

Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

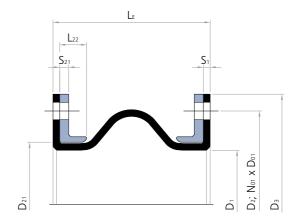
Small clamp: depending on Ø: 9–12 mm Hinge bolt clamp: depending on Ø: 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310

Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Accessories Cross section U110A


Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

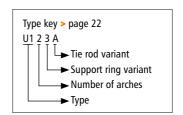
Filled arch:

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
U110A FDA		None	Depending on the diameter up to 100 bar, vacuum stability on request	> page 74
U112A FDA		No medium contact, embedded in the arches	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 76
Materials				

Materials

Stainless steel, embedded Carbon steel, embedded



Silicon rubber expansion joints for food applications with aramid inserts and Tri-clamp end fittings

U120A Ø 80 - 4,000 mm

- Type U120A without vacuum rings
- > Type U121A with internal vacuum rings
- > Type U122A with embedded vacuum rings
- > Type U123A without vacuum rings, with external support ring
- > Type U124A with internal vacuum rings, with external support ring
- > Type U125A
 with embedded vacuum rings,
 with external support ring

Universal expansion joint with two arches

Design: High elastic, streamlined, double wide arch rubber bellows with

full faced rubber flanges, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum rings and/or external support ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and

ASTM F1123 - 87.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Standard $L_F = 350 \text{ to } 600 \text{ mm} \ (> page 110-115)$

Custom length on request

Pressure: Up to 40 bar depending on diameter and length

Vacuum not allowed without vacuum rings, with vacuum rings up

to 0.05 bar absolute

Movement: For large axial, lateral and angular movements

Spring rate: To calculate the axial and lateral spring rate for double arch joints,

divide our single arch values of type U110A by the number of

arches (> page 296)

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part, round backing flanges with support collars and clearance holes

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

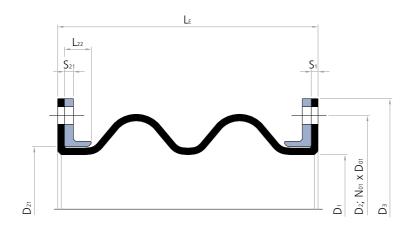
Protective shield or cover

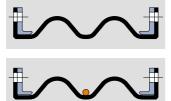
Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)


Filled arch:


Support rings

TYPE	Support rings		Vacuum ring	Support ring	Pressure	Movement
U120A			None	None	Low pressure, vacuum stability on request	> page 110–111
U121A			Medium contact, inside the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 112–113
U122A			No medium contact, embedded in the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 114–115
U123A			None	External between the arches	Depending on the diameter up to 40 bar, slight vacuum	> page 110–111
U124A			Medium contact, inside the arches	External between the arches	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 112–113
U125A			No medium contact, embedded in the arches	External between the arches	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 114–115
Materials	;					
Stainless	steel	Carbon steel,	rubberised	C	arbon steel, embedde	ed

Cross section U120A

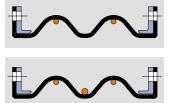
U120A

> without vacuum rings

U123A

> without vacuum rings, with external support ring

					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar $L_E =$	350 mm			up to 10					up to 10	bar $L_E =$	450 mm	
				_					n request					_	
α	Lol	Move	ment	10/	A	Lol	Move	ment	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	Move	ement	101	A
Ø	+\}-		Κ¥	\		-{}-		K }	\		-{}-		E J	\	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100	62	20	38	21.8	177	80	40	56	38.7	254	88	41	61	39.4	260
125	62 62	20 20	38 37	17.7 14.9	241 314	80 80	40 40	55 54	32.6 28.1	330 415	88 88	41 41	60 59	33.3 28.7	337
150 175	62	20	36	14.9	415	80	40	54 54	24.6	531	88	41	58	25.1	423 539
200	62	20	36	11.3	491	80	40	53	21.8	616	88	41	57	22.3	625
250	62	20	35	9.1	707	80	40	52	17.7	855	88	41	56	18.2	866
300	62 62	20 20	35 34	7.6 6.5	973 1,288	80 80	40 40	51 50	14.9 12.9	1,146 1,486	88 88	41 41	55 54	15.3 13.2	1,158 1,500
350 400	62	20	34	5.7	1,605	80	40	50	11.3	1,400	88	41	54	11.6	1,840
450	62	20	33	5.1	1,987	80	40	49	10.1	2,231	88	41	53	10.3	2,248
500	62	20	33	4.6	2,402	80	40	49	9.1	2,669	88	41	52	9.3	2,688
550	62 62	20 20	33 33	4.2 3.8	2,827	80 80	40 40	48 48	8.3 7.6	3,117 3,664	88 88	41 41	52 52	8.5 7.8	3,137 3,685
600 650	62	20	32	3.5	3,349 3,848	80	40	48	7.0	4,185	88	41	51	7.8	4,208
700	62	20	32	3.3	4,465	80	40	47	6.5	4,827	88	41	51	6.7	4,852
750	62	20	32	3.1	5,027	80	40	47	6.1	5,411	88	41	51	6.2	5,437
800	62 62	20 20	32 32	2.9	5,741	80	40	47	5.7 5.4	6,151	88	41 41	50 50	5.9	6,179
850 900	62	20	31	2.7 2.5	6,362 7,163	80 80	40 40	46 46	5.4	6,793 7,620	88 88	41	50	5.5 5.2	6,822 7,651
950	62	20	31	2.4	7,854	80	40	46	4.8	8,332	88	41	49	4.9	8,365
1000	62	20	31	2.3	8,742	80	40	46	4.6	9,246	88	41	49	4.7	9,280
1050	62	20	31	2.2	9,503	80	40	46 45	4.4	10,029	88	41	49	4.5	10,064
1100 1150	62 62	20 20	31 31	2.1 2.0	10,496 11,310	80 80	40 40	45 45	4.2 4.0	11,047 11,882	88 88	41 41	49 49	4.3 4.1	11,085 11,921
1200	62	20	31	1.9	12,370	80	40	45	3.8	12,969	88	41	48	3.9	13,009
1250	62	20	30	1.8	13,273	80	40	45	3.7	13,893	88	41	48	3.8	13,935
1300	62	20	30	1.8	14,420	80	40	45 45	3.5	15,066	88	41	48	3.6	15,109
1350 1400	62 62	20 20	30 30	1.7 1.6	15,394 16,627	80 80	40 40	45 44	3.4 3.3	16,061 17,320	88 88	41 41	48 48	3.5 3.4	16,106 17,366
1450	62	20	30	1.6	17,671	80	40	44	3.2	18,385	88	41	48	3.2	18,433
1500	62	20	30	1.5	18,991	80	40	44	3.1	19,731	88	41	47	3.1	19,781
1600 1650	62 62	20 20	30 30	1.4 1.4	21,512 22,698	80 80	40 40	44 44	2.9 2.8	22,299 23,506	88 88	41 41	47 47	2.9 2.8	22,352 23,561
1700	62	20	30	1.3	24,190	80	40	44	2.7	25,025	88	41	47	2.8	25,081
1800	62	20	29	1.3	27,055	80	40	43	2.5	27,937	88	41	47	2.6	27,996
1900	62	20	29	1.2	30,018	80	40	43	2.4	30,946	88	41	46	2.5	31,009
1950 2000	62 62	20 20	29 29	1.2 1.1	31,416 33,168	80 80	40 40	43 43	2.3 2.3	32,365 34,143	88 88	41 41	46 46	2.4 2.3	32,429 34,209
2100	62	20	29	1.1	36,474	80	40	43	2.2	37,497	88	41	46	2.2	37,565
2200	62	20	29	1.0	39,938	80	40	43	2.1	41,007	88	41	46	2.1	41,079
2250	62	20	29	1.0	41,548	80	40	42	2.0	42,638	88	41	46	2.1	42,712
2300 2400	62 62	20 20	29 29	1.0 1.0	43,558 47,336	80 80	40 40	42 42	2.0 1.9	44,675 48,500	88 88	41 41	46 45	2.0 2.0	44,750 48,578
2500	62	20	29	0.9	51,271	80	40	42	1.8	52,482	88	41	45	1.9	52,563
2550	62	20	29	0.9	53,093	80	40	42	1.8	54,325	88	41	45	1.8	54,408
2600	62	20	29	0.9	55,363	80	40	42	1.8	56,621	88	41	45 45	1.8	56,706
2700 2800	62 62	20 20	28 28	0.8 0.8	59,612 64,018	80 80	40 40	42 42	1.7 1.6	60,917 65,370	88 88	41 41	45 45	1.7 1.7	61,005 65,461
2850	62	20	28	0.8	66,052	80	40	42	1.6	67,426	88	41	45	1.6	67,518
2900	62	20	28	0.8	68,581	80	40	42	1.6	69,981	88	41	45	1.6	70,075
3000	62	20	28	0.8	73,301	80	40	41	1.5	74,748	88	41	45	1.6	74,845
3100 3150	62 62	20 20	28 28	0.7 0.7	78,179 80,425	80 80	40 40	41 41	1.5 1.5	79,673 81,940	88 88	41 41	44 44	1.5 1.5	79,773 82,041
3200	62	20	28	0.7	83,213	80	40	41	1.4	84,754	88	41	44	1.5	84,857
3300	62	20	28	0.7	88,405	80	40	41	1.4	89,993	88	41	44	1.4	90,099
3400	62	20	28	0.7	93,753	80	40	41	1.3	95,388	88	41	44	1.4	95,498
3450 3600	62 62	20 20	28 28	0.7 0.6	96,211 104,922	80 80	40 40	41 41	1.3 1.3	97,868 106,651	88 88	41 41	44 44	1.4 1.3	97,979 106,767
3800	62	20	28	0.6	116,718	80	40	41	1.2	118,542	88	41	44	1.2	118,664
4000	62	20	27	0.6	129,143	80	40	40	1.1	131,061	88	41	43	1.2	131,190



> without vacuum rings, with external support ring

					Install	ation le	ngth (L	_{-E}) at de	sign pre	essure					
	up to 10	bar $L_E =$	500 mm					550 mm			up to 10	bar L _E =	600 mm		
								n request							
Lol	Move	ement	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	Move	ment	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	Move	اما	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	~
*	mm mm	±mm	±°	cm ²	*	mm mm	±mm	±°	Cm ²	► Mm	E E	±mm	±°	Cm ²	Ø
106	61	79	50.7	353	124	82	97	58.6	460	138	85	105	59.5	491	100
106 106	61 61	77 76	44.3 39.1	441 539	124 124	82 82	95 93	52.7 47.6	560 670	138 138	85 85	103 101	53.7 48.6	594 707	125 150
106	61	76 75	34.9	670	124	82	92	47.6	814	138	85	100	44.2	855	175
106	61	74	31.4	765	124	82	91	39.4	919	138	85	99	40.4	962	200
106	61	72	26.0	1,029	124	82	89	33.3	1,207	138	85	97	34.2	1,257	250
106 106	61 61	71 70	22.1 19.2	1,346 1,713	124 124	82 82	88 86	28.7 25.1	1,548	138 138	85 85	95 94	29.5 25.9	1,605 2,003	300
106	61	70 69	17.0	2,075	124	82 82	85	22.3	1,940 2,324	138	85	93	23.9	2,393	350 400
106	61	69	15.2	2,507	124	82	84	20.0	2,781	138	85	92	20.7	2,856	450
106	61	68	13.7	2,971	124	82	84	18.2	3,267	138	85	91	18.8	3,349	500
106	61	67	12.5	3,442	124	82	83	16.6	3,761	138	85	90	17.2	3,848	550
106 106	61 61	67 66	11.5 10.6	4,015 4,560	124 124	82 82	82 82	15.3 14.2	4,359 4,927	138 138	85 85	89 89	15.8 14.7	4,453 5,027	600 650
106	61	66	9.9	5,230	124	82	81	13.2	5,621	138	85	88	13.7	5,728	700
106	61	66	9.2	5,836	124	82	81	12.3	6,249	138	85	87	12.8	6,362	750
106	61	65	8.7	6,604	124	82	80	11.6	7,044	138	85	87	12.0	7,163	800
106 106	61 61	65 64	8.2 7.7	7,268 8,123	124 124	82 82	80 79	10.9 10.3	7,729 8,610	138 138	85 85	86 86	11.3 10.7	7,854 8,742	850 900
106	61	64	7.7	8,858	124	82	79	9.8	9,366	138	85	86	10.7	9,503	950
106	61	64	7.0	9,799	124	82	79	9.3	10,333	138	85	85	9.6	10,477	1000
106	61	64	6.6	10,605	124	82	78	8.9	11,159	138	85	85	9.2	11,310	1050
106	61	63	6.3	11,652	124	82	78	8.5	12,233	138	85	84	8.8	12,390	1100
106 106	61 61	63 63	6.1 5.8	12,509 13,623	124 124	82 82	78 77	8.1 7.8	13,110 14,250	138 138	85 85	84 84	8.4 8.1	13,273 14,420	1150 1200
106	61	63	5.6	14,569	124	82	77	7.5	15,218	138	85	84	7.7	15,394	1250
106	61	62	5.4	15,770	124	82	77	7.2	16,445	138	85	83	7.5	16,627	1300
106	61	62 62	5.2 5.0	16,787	124	82 82	76 76	6.9 6.7	17,483	138	85 85	83 83	7.2	17,671	1350
106 106	61 61	62	4.8	18,074 19,162	124 124	82 82	76 76	6.5	18,796 19,906	138 138	85	82	6.9 6.7	18,991 20,106	1400 1450
106	61	62	4.6	20,536	124	82	76	6.2	21,305	138	85	82	6.5	21,512	1500
106	61	61	4.4	23,154	124	82	75	5.9	23,970	138	85	82	6.1	24,190	1600
106	61	61	4.2	24,384	124	82	75 75	5.7	25,221	138	85	81	5.9	25,447	1650
106 106	61 61	61 61	4.1 3.9	25,930 28,893	124 124	82 82	75 74	5.5 5.2	26,793 29,804	138 138	85 85	81 81	5.7 5.4	27,026 30,049	1700 1800
106	61	60	3.7	31,952	124	82	74	4.9	32,910	138	85	80	5.1	33,168	1900
106	61	60	3.6	33,394	124	82	74	4.8	34,373	138	85	80	5.0	34,636	1950
106	61	60	3.5	35,199	124	82	74	4.7	36,204	138	85	80	4.9	36,474	2000
106 106	61 61	60 59	3.3 3.2	38,603 42,164	124 124	82 82	73 73	4.5 4.3	39,655 43,263	138 138	85 85	80 79	4.6 4.4	39,938 43,558	2100 2200
106	61	59	3.1	43,818	124	82	73	4.2	44,938	138	85	79	4.4	45,239	2250
106	61	59	3.0	45,882	124	82	73	4.1	47,028	138	85	79	4.2	47,336	2300
106	61	59	2.9	49,757	124	82	72	3.9	50,950	138	85	79 70	4.1	51,271	2400
106 106	61 61	59 59	2.8 2.7	53,789 55,655	124 124	82 82	72 72	3.8 3.7	55,030 56,917	138 138	85 85	78 78	3.9 3.8	55,363 57,256	2500 2550
106	61	59	2.7	57,979	124	82	72	3.6	59,266	138	85	78	3.7	59,612	2600
106	61	58	2.6	62,325	124	82	72	3.5	63,660	138	85	78	3.6	64,018	2700
106	61	58	2.5	66,829	124	82	71	3.4	68,210	138	85	78	3.5	68,581	2800
106	61 61	58 58	2.5	68,906 71,489	124 124	82 82	71 71	3.3 3.2	70,309	138 138	85 85	77 77	3.4	70,686 73,301	2850 2900
106 106	61	58 58	2.4 2.3	76,307	124	82 82	71 71	3.2	72,918 77,783	138	85 85	77 77	3.4 3.2	78,179	3000
106	61	58	2.3	81,282	124	82	71	3.0	82,805	138	85	77	3.1	83,213	3100
106	61	58	2.2	83,571	124	82	71	3.0	85,116	138	85	77	3.1	85,530	3150
106	61	57	2.2	86,413	124	82	71	2.9	87,984	138	85	77 76	3.0	88,405	3200
106 106	61 61	57 57	2.1 2.1	91,702 97,148	124 124	82 82	70 70	2.8 2.8	93,320 98,813	138 138	85 85	76 76	2.9 2.9	93,753 99,259	3300 3400
106	61	57	2.0	99,650	124	82	70	2.7	101,336	138	85	76	2.8	101,788	3450
106	61	57	1.9	108,511	124	82	70	2.6	110,270	138	85	76	2.7	110,741	3600
106	61	57	1.8	120,503	124	82	70	2.5	122,356	138	85	75	2.6	122,852	3800
106	61	56	1.7	133,123	124	82	69	2.3	135,070	138	85	75	2.4	135,591	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

U121A

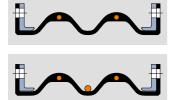
> with internal vacuum rings

U124A

> with internal vacuum rings, with external support ring

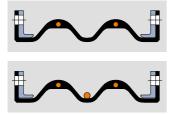
					Install	ation le	nath (L	at de	sign pre	essure					
		up to 10	bar L ₅ =	350 mm			up to 10	_				up to 10	bar L ₅ =	450 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		А		Move	ment		А
Ø	₩			±°	Cm ²	→			\(\frac{1}{2}\)	Cm ²	₩			±°	
mm 100	mm 62	mm 7	±mm 38	21.8	177	mm 80	mm 13	±mm 56	±° 38.7	254	mm 88	mm 13	±mm 61	39.4	cm ² 260
125	62	7	38	17.7	241	80	13	55	32.6	330	88	13	60	33.3	337
150	62	7	37	14.9	314	80	13	54	28.1	415	88	13	59	28.7	423
175	62	7	36	12.9	415	80	13	54	24.6	531	88	13	58	25.1	539
200	62	7 7	36	11.3	491	80	13 13	53	21.8	616 855	88	13	57	22.3	625 866
250 300	62 62	7	35 35	9.1 7.6	707 973	80 80	13	52 51	17.7 14.9	1,146	88 88	13 13	56 55	18.2 15.3	1,158
350	62	7	34	6.5	1,288	80	13	50	12.9	1,486	88	13	54	13.2	1,500
400	62	7	34	5.7	1,605	80	13	50	11.3	1,825	88	13	54	11.6	1,840
450	62	7	33	5.1	1,987	80	13	49	10.1	2,231	88	13	53	10.3	2,248
500	62	7	33	4.6	2,402	80	13	49	9.1	2,669	88	13	52	9.3	2,688
550 600	62 62	7 7	33 33	4.2 3.8	2,827	80 80	13 13	48 48	8.3	3,117	88 88	13 13	52	8.5	3,137 3,685
650	62	7	32	3.5	3,349 3,848	80	13	40 48	7.6 7.0	3,664 4,185	88	13	52 51	7.8 7.2	4,208
700	62	7	32	3.3	4,465	80	13	47	6.5	4,827	88	13	51	6.7	4,852
750	62	7	32	3.1	5,027	80	13	47	6.1	5,411	88	13	51	6.2	5,437
800	62	7	32	2.9	5,741	80	13	47	5.7	6,151	88	13	50	5.9	6,179
850	62	7	32	2.7	6,362	80	13	46	5.4	6,793	88	13	50	5.5	6,822
900 950	62	7 7	31	2.5	7,163	80	13	46	5.1	7,620	88	13	50	5.2	7,651
1000	62 62	7	31 31	2.4 2.3	7,854 8,742	80 80	13 13	46 46	4.8 4.6	8,332 9,246	88 88	13 13	49 49	4.9 4.7	8,365 9,280
1050	62	7	31	2.2	9,503	80	13	46	4.4	10,029	88	13	49	4.5	10,064
1100	62	7	31	2.1	10,496	80	13	45	4.2	11,047	88	13	49	4.3	11,085
1150	62	7	31	2.0	11,310	80	13	45	4.0	11,882	88	13	49	4.1	11,921
1200	62	7	31	1.9	12,370	80	13	45	3.8	12,969	88	13	48	3.9	13,009
1250	62	7	30	1.8	13,273	80	13	45	3.7	13,893	88	13	48	3.8	13,935
1300 1350	62 62	7 7	30 30	1.8 1.7	14,420 15,394	80 80	13 13	45 45	3.5 3.4	15,066 16,061	88 88	13 13	48 48	3.6 3.5	15,109 16,106
1400	62	7	30	1.6	16,627	80	13	44	3.3	17,320	88	13	48	3.4	17,366
1450	62	7	30	1.6	17,671	80	13	44	3.2	18,385	88	13	48	3.2	18,433
1500	62	7	30	1.5	18,991	80	13	44	3.1	19,731	88	13	47	3.1	19,781
1600	62	7	30	1.4	21,512	80	13	44	2.9	22,299	88	13	47	2.9	22,352
1650	62	7	30	1.4	22,698	80	13	44	2.8	23,506	88	13	47	2.8	23,561
1700 1800	62 62	7 7	30 29	1.3 1.3	24,190 27,055	80 80	13 13	44 43	2.7 2.5	25,025 27,937	88 88	13 13	47 47	2.8 2.6	25,081 27,996
1900	62	7	29	1.2	30,018	80	13	43	2.4	30,946	88	13	46	2.5	31,009
1950	62	7	29	1.2	31,416	80	13	43	2.3	32,365	88	13	46	2.4	32,429
2000	62	7	29	1.1	33,168	80	13	43	2.3	34,143	88	13	46	2.3	34,209
2100	62	7	29	1.1	36,474	80	13	43	2.2	37,497	88	13	46	2.2	37,565
2200	62	7	29	1.0	39,938	80	13	43	2.1	41,007	88	13	46	2.1	41,079
2250 2300	62 62	7 7	29 29	1.0 1.0	41,548 43,558	80 80	13 13	42 42	2.0 2.0	42,638 44,675	88 88	13 13	46 46	2.1 2	42,712 44,750
2400	62	7	29	1.0	47,336	80	13	42	1.9	48,500	88	13	45	2	48,578
2500	62	7	29	0.9	51,271	80	13	42	1.8	52,482	88	13	45	1.9	52,563
2550	62	7	29	0.9	53,093	80	13	42	1.8	54,325	88	13	45	1.8	54,408
2600	62	7	29	0.9	55,363	80	13	42	1.8	56,621	88	13	45	1.8	56,706
2700	62	7	28	0.8	59,612	80	13	42	1.7	60,917	88	13	45	1.7	61,005
2800	62	7	28	0.8	64,018	80	13	42	1.6	65,370	88	13	45 45	1.7	65,461 67,519
2850 2900	62 62	7 7	28 28	0.8 0.8	66,052 68,581	80 80	13 13	42 42	1.6 1.6	67,426 69,981	88 88	13 13	45 45	1.6 1.6	67,518 70,075
3000	62	7	28	0.8	73,301	80	13	41	1.5	74,748	88	13	45	1.6	74,845
3100	62	7	28	0.7	78,179	80	13	41	1.5	79,673	88	13	44	1.5	79,773
3150	62	7	28	0.7	80,425	80	13	41	1.5	81,940	88	13	44	1.5	82,041
3200	62	7	28	0.7	83,213	80	13	41	1.4	84,754	88	13	44	1.5	84,857
3300	62	7	28	0.7	88,405	80	13	41	1.4	89,993	88	13	44	1.4	90,099
3400 3450	62 62	7 7	28 28	0.7 0.7	93,753 96,211	80 80	13 13	41 41	1.3 1.3	95,388 97,868	88 88	13 13	44 44	1.4 1.4	95,498 97,979
3600	62	7	28	0.7	104,922	80	13	41	1.3	106,651	88	13	44	1.4	106,767
3800	62	7	28	0.6	116,718	80	13	41	1.2	118,542	88	13	44	1.2	118,664
4000	62	7	27	0.6	129,143	80	13	40	1.1	131,061	88	13	43	1.2	131,190

> with internal vacuum rings, with external support ring


					Install	ati <u>on le</u>	ngth (L	. _F) at de	sign <u>pr</u>	ess <u>ure</u>					
	up to 10	bar L _E =	500 mm				<u> </u>	550 mm			up to 10	bar L _E =	600 mm		
								n request							
	Move	ment		Α		Move	ment		Α		Move	ment		А	
→	★	±mm	₩ ±°	cm ²	→	★	±mm	±°	Cm ²	→	★	±mm	₩ ±°	Cm ²	Ø
106	20	79	50.7	353	124	27	97	58.6	460	138	28	105	59.5	491	100
106	20	77	44.3	441	124	27	95	52.7	560	138	28	103	53.7	594	125
106	20	76	39.1	539	124	27	93	47.6	670	138	28	101	48.6	707	150
106	20	75	34.9	670	124	27	92	43.1	814	138	28	100	44.2	855	175
106	20	74	31.4	765	124	27	91	39.4	919	138	28	99	40.4	962	200
106 106	20 20	72 71	26 22.1	1,029	124	27 27	89 88	33.3 28.7	1,207	138	28 28	97 95	34.2 29.5	1,257 1,605	250 300
106	20	71 70	19.2	1,346 1,713	124 124	27	86	28.7 25.1	1,548 1,940	138 138	28	95 94	29.5 25.9	2,003	350 350
106	20	69	17	2,075	124	27	85	22.3	2,324	138	28	93	23	2,393	400
106	20	69	15.2	2,507	124	27	84	20	2,781	138	28	92	20.7	2,856	450
106	20	68	13.7	2,971	124	27	84	18.2	3,267	138	28	91	18.8	3,349	500
106	20	67	12.5	3,442	124	27	83	16.6	3,761	138	28	90	17.2	3,848	550
106	20	67	11.5	4,015	124	27	82	15.3	4,359	138	28	89	15.8	4,453	600
106 106	20 20	66 66	10.6 9.9	4,560 5,230	124 124	27 27	82 81	14.2 13.2	4,927 5,621	138 138	28 28	89 88	14.7 13.7	5,027 5,728	650 700
106	20	66	9.9	5,836	124	27	81	12.3	6,249	138	28	87	12.8	6,362	750 750
106	20	65	8.7	6,604	124	27	80	11.6	7,044	138	28	87	12	7,163	800
106	20	65	8.2	7,268	124	27	80	10.9	7,729	138	28	86	11.3	7,854	850
106	20	64	7.7	8,123	124	27	79	10.3	8,610	138	28	86	10.7	8,742	900
106	20	64	7.3	8,858	124	27	79	9.8	9,366	138	28	86	10.1	9,503	950
106	20	64	7	9,799	124	27	79	9.3	10,333	138	28	85	9.6	10,477	1000
106 106	20 20	64 63	6.6 6.3	10,605 11,652	124 124	27 27	78 78	8.9 8.5	11,159 12,233	138 138	28 28	85 84	9.2 8.8	11,310 12,390	1050 1100
106	20	63	6.1	12,509	124	27	78	8.1	13,110	138	28	84	8.4	13,273	1150
106	20	63	5.8	13,623	124	27	77	7.8	14,250	138	28	84	8.1	14,420	1200
106	20	63	5.6	14,569	124	27	77	7.5	15,218	138	28	84	7.7	15,394	1250
106	20	62	5.4	15,770	124	27	77	7.2	16,445	138	28	83	7.5	16,627	1300
106	20	62	5.2	16,787	124	27	76	6.9	17,483	138	28	83	7.2	17,671	1350
106	20	62 62	5 4.8	18,074	124	27	76 76	6.7 6.5	18,796	138	28	83	6.9	18,991	1400 1450
106 106	20 20	62	4.6	19,162 20,536	124 124	27 27	76 76	6.2	19,906 21,305	138 138	28 28	82 82	6.7 6.5	20,106 21,512	1500
106	20	61	4.4	23,154	124	27	75	5.9	23,970	138	28	82	6.1	24,190	1600
106	20	61	4.2	24,384	124	27	75	5.7	25,221	138	28	81	5.9	25,447	1650
106	20	61	4.1	25,930	124	27	75	5.5	26,793	138	28	81	5.7	27,026	1700
106	20	61	3.9	28,893	124	27	74	5.2	29,804	138	28	81	5.4	30,049	1800
106	20	60	3.7	31,952	124	27	74	4.9	32,910	138	28	80	5.1	33,168	1900
106 106	20 20	60 60	3.6 3.5	33,394 35,199	124 124	27 27	74 74	4.8 4.7	34,373 36,204	138 138	28 28	80 80	5 4.9	34,636 36,474	1950 2000
106	20	60	3.3	38,603	124	27	73	4.7	39,655	138	28	80	4.6	39,938	2100
106	20	59	3.2	42,164	124	27	73	4.3	43,263	138	28	79	4.4	43,558	2200
106	20	59	3.1	43,818	124	27	73	4.2	44,938	138	28	79	4.3	45,239	2250
106	20	59	3	45,882	124	27	73	4.1	47,028	138	28	79	4.2	47,336	2300
106	20	59 50	2.9	49,757	124	27	72 72	3.9	50,950	138	28	79 70	4.1	51,271	2400
106 106	20 20	59 59	2.8 2.7	53,789 55,655	124 124	27 27	72 72	3.8 3.7	55,030 56,917	138 138	28 28	78 78	3.9 3.8	55,363 57,256	2500 2550
106	20	59	2.7	57,979	124	27	72	3.6	59,266	138	28	78 78	3.7	59,612	2600
106	20	58	2.6	62,325	124	27	72	3.5	63,660	138	28	78	3.6	64,018	2700
106	20	58	2.5	66,829	124	27	71	3.4	68,210	138	28	78	3.5	68,581	2800
106	20	58	2.5	68,906	124	27	71	3.3	70,309	138	28	77	3.4	70,686	2850
106	20	58	2.4	71,489	124	27	71 71	3.2	72,918	138	28	77 77	3.4	73,301	2900
106 106	20 20	58 58	2.3	76,307 81,282	124 124	27 27	71 71	3.1 3	77,783 82,805	138 138	28 28	77 77	3.2 3.1	78,179 83,213	3000 3100
106	20	58	2.3	83,571	124	27	71	3	85,116	138	28	77	3.1	85,530	3150
106	20	57	2.2	86,413	124	27	71	2.9	87,984	138	28	77	3	88,405	3200
106	20	57	2.1	91,702	124	27	70	2.8	93,320	138	28	76	2.9	93,753	3300
106	20	57	2.1	97,148	124	27	70	2.8	98,813	138	28	76	2.9	99,259	3400
106	20	57	2	99,650	124	27	70	2.7	101,336	138	28	76	2.8	101,788	3450
106	20 20	57 57	1.9 1.8	108,511 120,503	124	27 27	70 70	2.6 2.5	110,270 122,356	138	28	76 75	2.7	110,741 122,852	3600 3800
106 106	20	56	1.8	120,503	124 124	27 27	70 69	2.5	135,070	138 138	28 28	75 75	2.6 2.4	135,591	4000
100	20	30		133,123	127	_,	03	2.3	133,010	130	20	, ,	2.7	133,331	1000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

U122A


> with embedded vacuum rings

U125A

> with embedded vacuum rings, with external support ring

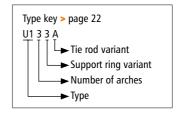
					Install	ation le	nath (L	at de	sign pro	essure					
		up to 10	bar L ∈ =	350 mm			up to 10		<u> </u>			up to 10	bar L ₅ =	450 mm	
							_		n request						
		Move	ement		Α		Move	ment		Α		Move	ment		А
Ø	→			±°	Cm ²	***			\(\frac{1}{2}\)	cm ²	₩			₩ ±°	cm ²
mm 100	mm 41	mm 5	±mm 36	15.6	150	mm 52	mm 12	±mm 54	±° 35.0	222	mm 58	mm 12	±mm 59	36.5	232
125	41	5	35	12.6	209	52	12	53	29.2	293	58	12	58	30.6	305
150	41	5	35	10.6	278	52	12	52	25.0	373	58	12	57	26.3	387
175	41	5 5	34	9.1	373	52	12	51	21.8	483	58	12	56	22.9	499
200 250	41 41	5	34 33	8.0 6.4	445 651	52 52	12 12	51 50	19.3 15.6	564 794	58 58	12 12	55 54	20.3 16.5	581 814
300	41	5	32	5.3	908	52	12	49	13.1	1,075	58	12	53	13.9	1,099
350	41	5	32	4.6	1,213	52	12	48	11.3	1,405	58	12	52	11.9	1,432
400	41	5	32	4.0	1,521	52	12	48	9.9	1,735	58	12	52	10.5	1,765
450 500	41 41	5 5	31 31	3.6 3.2	1,893 2,299	52 52	12 12	47 47	8.8 8.0	2,132 2,561	58 58	12 12	51 51	9.3 8.4	2,165 2,597
550	41	5	31	2.9	2,715	52	12	46	7.3	3,000	58	12	50	7.7	3,039
600	41	5	30	2.7	3,227	52	12	46	6.7	3,536	58	12	50	7	3,578
650	41	5	30	2.5	3,718	52	12	45	6.1	4,049	58	12	50	6.5	4,094
700	41	5	30	2.3	4,324	52	12	45	5.7	4,681	58	12	49	6	4,729
750 800	41 41	5 5	30 30	2.1 2.0	4,877 5,581	52 52	12 12	45 45	5.3 5.0	5,255 5,986	58 58	12 12	49 49	5.6 5.3	5,307 6,041
850	41	5	30	1.9	6,193	52	12	44	4.7	6,619	58	12	48	5.5	6,677
900	41	5	29	1.8	6,984	52	12	44	4.4	7,436	58	12	48	4.7	7,497
950	41	5	29	1.7	7,667	52	12	44	4.2	8,139	58	12	48	4.5	8,203
1000	41	5	29	1.6	8,544	52	12	44	4.0	9,043	58	12	48	4.2	9,110
1050 1100	41 41	5 5	29 29	1.5 1.5	9,297 10,279	52 52	12 12	44 43	3.8 3.6	9,817 10,825	58 58	12 12	47 47	4 3.8	9,887 10,899
1150	41	5	29	1.4	11,085	52	12	43	3.5	11,652	58	12	47	3.7	11,728
1200	41	5	29	1.3	12,135	52	12	43	3.3	12,728	58	12	47	3.5	12,808
1250	41	5	29	1.3	13,029	52	12	43	3.2	13,643	58	12	47	3.4	13,726
1300	41	5	28	1.2	14,166	52	12	43	3.1	14,806	58	12	47	3.3	14,892
1350 1400	41 41	5 5	28 28	1.2 1.1	15,131 16,354	52 52	12 12	43 42	3.0 2.9	15,792 17,041	58 58	12 12	46 46	3.1 3	15,881 17,134
1450	41	5	28	1.1	17,390	52	12	42	2.8	18,098	58	12	46	2.9	18,194
1500	41	5	28	1.1	18,699	52	12	42	2.7	19,433	58	12	46	2.8	19,532
1600	41	5	28	1.0	21,201	52	12	42	2.5	21,983	58	12	46	2.6	22,088
1650	41 41	5 5	28	1.0	22,379 23,861	52	12 12	42 42	2.4	23,181	58 58	12 12	46 45	2.6 2.5	23,289 24,801
1700 1800	41	5	28 28	0.9 0.9	26,706	52 52	12	41	2.4 2.2	24,689 27,582	58	12	45 45	2.5	27,700
1900	41	5	27	0.8	29,651	52	12	41	2.1	30,573	58	12	45	2.2	30,698
1950	41	5	27	0.8	31,040	52	12	41	2.1	31,984	58	12	45	2.2	32,111
2000	41	5	27	0.8	32,781	52	12	41	2.0	33,751	58	12	45	2.1	33,882
2100 2200	41 41	5 5	27 27	0.8 0.7	36,069 39,514	52 52	12 12	41 41	1.9 1.8	37,086 40,578	58 58	12 12	45 44	2 1.9	37,223 40,721
2250	41	5	27	0.7	41,115	52	12	41	1.8	42,200	58	12	44	1.9	42,346
2300	41	5	27	0.7	43,116	52	12	41	1.7	44,227	58	12	44	1.8	44,376
2400	41	5	27	0.7	46,875	52	12	40	1.7	48,033	58	12	44	1.8	48,188
2500 2550	41	5 5	27 27	0.6	50,791 52,604	52 52	12 12	40	1.6	51,996	58 50	12 12	44	1.7	52,158 53,995
2600	41 41	5 5	27 27	0.6 0.6	54,864	52 52	12	40 40	1.6 1.5	53,831 56,116	58 58	12	44 44	1.7 1.6	56,284
2700	41	5	27	0.6	59,094	52	12	40	1.5	60,393	58	12	44	1.6	60,568
2800	41	5	26	0.6	63,481	52	12	40	1.4	64,828	58	12	43	1.5	65,008
2850	41	5	26	0.6	65,506	52	12	40	1.4	66,874	58	12	43	1.5	67,058
2900 3000	41 41	5 5	26 26	0.6 0.5	68,025 72,727	52 52	12 12	40 40	1.4 1.3	69,419 74,168	58 58	12 12	43 43	1.5 1.4	69,606 74,361
3100	41	5	26	0.5	77,585	52	12	39	1.3	79,073	58	12	43	1.4	74,301
3150	41	5	26	0.5	79,823	52	12	39	1.3	81,332	58	12	43	1.3	81,534
3200	41	5	26	0.5	82,601	52	12	39	1.3	84,136	58	12	43	1.3	84,342
3300	41	5	26	0.5	87,773	52	12	39	1.2	89,356	58	12	43	1.3	89,568
3400 3450	41 41	5 5	26 26	0.5 0.5	93,103 95,553	52 52	12 12	39 39	1.2 1.2	94,733 97,203	58 58	12 12	43 43	1.2 1.2	94,951 97,425
3600	41	5	26	0.4	104,234	52	12	39	1.1	105,958	58	12	42	1.2	106,188
3800	41	5	26	0.4	115,993	52	12	39	1.1	117,811	58	12	42	1.1	118,054
4000	41	5	26	0.4	128,380	52	12	39	1.0	130,292	58	12	42	1.1	130,548

U122A

> with embedded vacuum rings

U125A

> with embedded vacuum rings, with external support ring


					Install	ation le	ngth (L	_E) at de	sign pr	essure					
	up to 10	bar L ∈ =	500 mm	l			bar $L_E =$				up to 10	bar $L_E =$	600 mm		
							ressures o	n request							
Lal	Move	ment	101	A	اما	Move	ement	101	A	اما	Move	ment	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	- C
-13-		F. J			-		R. J	*		→		R.J			Ø
mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm
70	19	77	48.7	320	82	26	95	57.3	423	91	26	102	57.3	423	100
70 70	19 19	75 74	42.4 37.2	405 499	82 82	26 26	93 91	51.3 46.1	519 625	91 91	26 26	100 98	51.3 46.1	519 625	125 150
70	19	73	33.1	625	82	26	90	41.7	765	91	26	97	41.7	765	175
70	19	72	29.7	716	82	26	89	38	866	91	26	95	38	866	200
70 70	19 19	71 69	24.5 20.8	973 1,282	82 82	26 26	87 86	32 27.5	1,146 1,479	91 91	26 26	94 92	32 27.5	1,146 1,479	250 300
70	19	69	18	1,640	82	26	85	24	1,473	91	26	91	24.5	1,863	350
70	19	68	15.9	1,995	82	26	84	21.3	2,240	91	26	90	21.3	2,240	400
70	19	67	14.2	2,419	82	26	83	19.1	2,688	91	26	89	19.1	2,688	450
70 70	19 19	66 66	12.8 11.7	2,875 3,339	82 82	26 26	82 81	17.3 15.8	3,167 3,653	91 91	26 26	88 87	17.3 15.8	3,167 3,653	500 550
70	19	65	10.8	3,904	82	26	81	14.6	4,243	91	26	86	14.6	4,243	600
70	19	65	9.9	4,441	82	26	80	13.5	4,803	91	26	86	13.5	4,803	650
70 70	19 19	64 64	9.2 8.6	5,102 5,701	82 82	26 26	79 79	12.6 11.7	5,489 6,110	91 91	26 26	85 85	12.6 11.7	5,489 6,110	700 750
70	19	64	8.1	6,461	82 82	26	79 78	11.7	6,896	91	26	85 84	11.7	6,896	800
70	19	63	7.6	7,118	82	26	78	10.4	7,574	91	26	84	10.4	7,574	850
70	19	63	7.2	7,964	82	26	78	9.8	8,446	91	26	83	9.8	8,446	900
70 70	19 19	63 62	6.8 6.5	8,692 9,625	82 82	26 26	77 77	9.3 8.9	9,195 10,153	91 91	26 26	83 82	9.3 8.9	9,195 10,153	950 1000
70	19	62	6.2	10,423	82	26	77	8.5	10,133	91	26	82	8.5	10,133	1050
70	19	62	5.9	11,461	82	26	76	8.1	12,037	91	26	82	8.1	12,037	1100
70	19	61	5.7	12,311	82	26	76	7.7	12,908	91	26	81	7.7	12,908	1150
70 70	19 19	61 61	5.4 5.2	13,417 14,356	82 82	26 26	76 75	7.4 7.1	14,040 15,001	91 91	26 26	81 81	7.4 7.1	14,040 15,001	1200 1250
70	19	61	5	15,548	82	26	75	6.8	16,218	91	26	81	6.8	16,218	1300
70	19	61	4.8	16,559	82	26	75	6.6	17,250	91	26	80	6.6	17,250	1350
70 70	19 19	60 60	4.7	17,837 18,918	82 82	26 26	75 74	6.4	18,554	91 91	26 26	80 80	6.4	18,554 19,656	1400 1450
70	19	60	4.5 4.3	20,283	82	26	74 74	6.1 5.9	19,656 21,047	91	26	79	6.1 5.9	21,047	1500
70	19	60	4.1	22,885	82	26	74	5.6	23,697	91	26	79	5.6	23,697	1600
70	19	60	4	24,108	82	26	73	5.4	24,941	91	26	79	5.4	24,941	1650
70 70	19 19	59 59	3.8 3.6	25,645 28,592	82 82	26 26	73 73	5.2 5	26,504 29,498	91 91	26 26	79 78	5.2 5	26,504 29,498	1700 1800
70	19	59	3.4	31,636	82	26	73 73	4.7	32,589	91	26	78 78	4.7	32,589	1900
70	19	59	3.3	33,071	82	26	72	4.6	34,045	91	26	78	4.6	34,045	1950
70	19	58	3.3	34,867	82	26	72	4.5	35,867	91	26	77	4.5	35,867	2000
70 70	19 19	58 58	3.1 3	38,256 41,801	82 82	26 26	72 72	4.2 4.1	39,303 42,895	91 91	26 26	77 77	4.2 4.1	39,303 42,895	2100 2200
70	19	58	2.9	43,447	82	26	71	4.1	44,563	91	26	77	4.1	44,563	2250
70	19	58	2.8	45,503	82	26	71	3.9	46,645	91	26	76	3.9	46,645	2300
70	19	58 57	2.7	49,363	82	26	71 71	3.7	50,551	91	26	76 76	3.7	50,551	2400
70 70	19 19	57 57	2.6 2.6	53,379 55,238	82 82	26 26	71 71	3.6 3.5	54,615 56,495	91 91	26 26	76 76	3.6 3.5	54,615 56,495	2500 2550
70	19	57	2.5	57,553	82	26	71	3.4	58,836	91	26	76	3.4	58,836	2600
70	19	57	2.4	61,883	82	26	70	3.3	63,213	91	26	75	3.3	63,213	2700
70 70	19 19	57 57	2.3 2.3	66,371 68,442	82	26	70 70	3.2 3.1	67,748 69,840	91	26	75 75	3.2	67,748 69,840	2800 2850
70	19	57 57	2.3	71,016	82 82	26 26	70 70	3.1 3.1	72,440	91 91	26 26	75 75	3.1 3.1	72,440	2900
70	19	56	2.2	75,818	82	26	70	3	77,289	91	26	75	3	77,289	3000
70	19	56	2.1	80,777	82	26	69	2.9	82,295	91	26	74	2.9	82,295	3100
70 70	19 19	56 56	2.1 2	83,060 85,893	82 82	26 26	69 69	2.8 2.8	84,599 87,459	91 91	26 26	74 74	2.8 2.8	84,599 87,459	3150 3200
70	19	56	2	91,166	82 82	26	69	2.8	92,779	91	26	74 74	2.8	92,779	3300
70	19	56	1.9	96,597	82	26	69	2.6	98,256	91	26	74	2.6	98,256	3400
70	19	56	1.9	99,091	82	26	69	2.6	100,772	91	26	74	2.6	100,772	3450
70 70	19 19	55 55	1.8 1.7	107,928 119,888	82 82	26 26	68 68	2.5 2.4	109,682 121,736	91 91	26 26	73 73	2.5 2.4	109,682 121,736	3600 3800
70	19	55	1.7	132,477	82 82	26	68	2.4	134,419	91	26	73 73	2.4	134,419	4000
				_,					., , , , ,					.,	

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

U130A U140A U150A Ø 80 - 4,000 mm

- > Type U130A U140A U150A without vacuum rings
- > Type U131A U141A U151A with internal vacuum rings
- > Type U132A U142A U152A with embedded vacuum rings
- > Type U133A U143A U153A without vacuum rings, with external support rings
- > Type U134A U144A U154A with internal vacuum rings, with external support rings
- > Type U135A U145A U155A with embedded vacuum rings, with external support rings

Universal expansion joint with three or more arches

Design: High elastic, streamlined, triple or multiple wide arch rubber

bellows with full faced rubber flanges, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum rings and/or external support rings. In compliance with PED 2014/68/EU, FSA Technical

Handbook and ASTM F1123 - 87.

Diameters: \emptyset 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 650$ with 3 arches, type U130A (> page 120–122)

Standard $L_E=850$ with 4 arches, type U140A (> page 120–122) Standard $L_E=1050$ with 5 arches, type U150A (> page 120–122)

Custom length on request

Pressure: Up to 10 bar depending on diameter and length

Vacuum not allowed without vacuum rings, with vacuum rings up

to 0.05 bar absolute

Movement: For extremely large axial, lateral and angular movements

Spring rate: To calculate the axial and lateral spring rate for multiple arch joints,

divide our single arch values of type U110A by the number of

arches (> page 296)

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part, round backing flanges with support collars and clearance holes

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

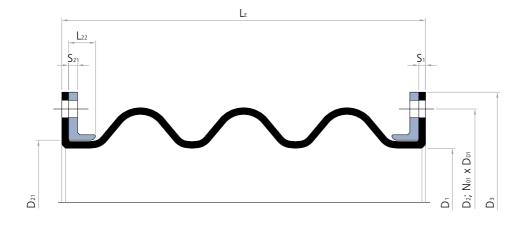
Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:

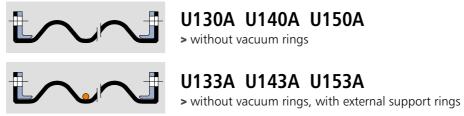


118 Universal expansion joints with full faced rubber flange

Support rings

TYPE	Support rings		Vacuum ring	Support ring	Pressure	Movement
U130A U140A U150A			None	None	Low pressure, vacuum stability on request	> page 120
U131A U141A U151A			Medium contact, inside the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 121
U132A U142A U152A		J	No medium contact, embedded in the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 122
U133A U143A U153A			None	External between the arches	Depending on the diameter up to 10 bar, slight vacuum	> page 120
U134A U144A U154A			Medium contact, inside the arches	External between the arches	Depending on the diameter up to 10 bar, for vacuum up to 0.05 bar absolute	> page 121
U135A U145A U155A			No medium contact, embedded in the arches	External between the arches	Depending on the diameter up to 10 bar, for vacuum up to 0.05 bar absolute	> page 122
Material	s					
Stainless	steel	Carbon steel, r	ubberised	Car	bon steel, embedded	

Cross section U130A



Rubber expansion joint with five arches of size \varnothing 3,600 mm for a submerged cooling water intake line

Extremly flexible multi-arch rubber expansion joint of size \varnothing 900 mm destined for a paper mill

					Install	ation le	ngth (L	_E) at de	sign pre	essure					
	up to 6	bar $L_E =$	650 mm	– U130A	U133A	up to 6			– U140A	U143A	up to 6 k	oar L _E = '	1,050 mn	ı – U150A	U153A
							higher pr	essures o	n request						
		Move	ement		Α		Move	ement		Α		Move	ement		Α
Ø	- [^]-		ξΉ	\leftarrow		- [^]-		E.A	\leftarrow		-[/]-		ξΉ	\leftarrow	
mm	mm	mm	±mm	±°	cm ²	mm []	mm	±mm	±°	cm ²	mm [V]	mm	±mm	±°	cm ²
100	159	92	118	61.5	353	212	123	158	67.9	353	265	154	197	72.0	353
125	159	92	116	55.8	441	212	123	154	63.1	441	265	154	193	67.9	441
150	159	92	114	50.8	539	212	123	152	58.6	539	265	154	190	64.0	539
175 200	159 159	92 92	112 111	46.4 42.6	670 765	212 212	123 123	150 148	54.6 50.9	670 765	265 265	154 154	187 185	60.4 57.0	670 765
250	159	92	109	36.4	1,029	212	123	145	44.5	1,029	265	154	181	50.9	1,029
300	159	92	107	31.5	1,346	212	123	143	39.4	1,346	265	154	178	45.8	1,346
350	159	92	105	27.7	1,713	212	123	141	35.1	1,713	265	154	176	41.3	1,713
400 450	159 159	92 92	104 103	24.7 22.2	2,075 2,507	212 212	123 123	139 137	31.6 28.7	2,075 2,507	265 265	154 154	174 172	37.6 34.4	2,075 2,507
500	159	92	103	20.2	2,307	212	123	136	26.2	2,971	265	154	172	31.6	2,307
550	159	92	101	18.5	3,442	212	123	135	24.1	3,442	265	154	169	29.2	3,442
600	159	92	100	17.0	4,015	212	123	134	22.3	4,015	265	154	167	27.2	4,015
650	159	92	100	15.8	4,560	212	123	133	20.7	4,560	265	154	166	25.4	4,560
700 750	159 159	92 92	99 98	14.7 13.8	5,230 5,836	212 212	123 123	132 131	19.4 18.2	5,230 5,836	265 265	154 154	165 164	23.7 22.3	5,230 5,836
800	159	92	98	13.0	6,604	212	123	130	17.1	6,604	265	154	163	21.1	6,604
850	159	92	97	12.2	7,268	212	123	130	16.1	7,268	265	154	162	19.9	7,268
900	159	92	97	11.6	8,123	212	123	129	15.3	8,123	265	154	161	18.9	8,123
950	159	92	96	11.0	8,858	212	123	128	14.5	8,858	265	154	160	18.0	8,858
1000 1050	159 159	92 92	96 95	10.4 9.9	9,799 10,605	212 212	123 123	128 127	13.8 13.2	9,799 10,605	265 265	154 154	160 159	17.1 16.3	9,799 10,605
1100	159	92	95	9.5	11,652	212	123	127	12.6	11,652	265	154	158	15.6	11,652
1150	159	92	95	9.1	12,509	212	123	126	12.1	12,509	265	154	158	15.0	12,509
1200	159	92	94	8.7	13,623	212	123	126	11.6	13,623	265	154	157	14.4	13,623
1250	159	92	94	8.4	14,569	212	123	125	11.1	14,569	265	154	156	13.8	14,569
1300 1350	159 159	92 92	94 93	8.1 7.8	15,770 16,787	212 212	123 123	125 124	10.7 10.3	15,770 16,787	265 265	154 154	156 155	13.3 12.9	15,770 16,787
1400	159	92	93	7.5	18,074	212	123	124	10.0	18,074	265	154	155	12.4	18,074
1450	159	92	93	7.2	19,162	212	123	124	9.6	19,162	265	154	154	12.0	19,162
1500	159	92	92	7.0	20,536	212	123	123	9.3	20,536	265	154	154	11.6	20,536
1600 1650	159 159	92 92	92 92	6.6 6.4	23,154 24,384	212 212	123 123	122 122	8.7 8.5	23,154 24,384	265 265	154 154	153 153	10.9 10.6	23,154 24,384
1700	159	92	91	6.2	25,930	212	123	122	8.2	25,930	265	154	152	10.3	25,930
1800	159	92	91	5.8	28,893	212	123	121	7.8	28,893	265	154	151	9.7	28,893
1900	159	92	90	5.5	31,952	212	123	121	7.4	31,952	265	154	151	9.2	31,952
1950	159	92	90	5.4	33,394	212	123	120	7.2	33,394	265	154	150	9.0	33,394
2000 2100	159 159	92 92	90 90	5.3 5.0	35,199 38,603	212 212	123 123	120 119	7.0 6.7	35,199 38,603	265 265	154 154	150 149	8.8 8.3	35,199 38,603
2200	159	92	89	4.8	42,164	212	123	119	6.4	42,164	265	154	149	8.0	42,164
2250	159	92	89	4.7	43,818	212	123	119	6.2	43,818	265	154	148	7.8	43,818
2300	159	92	89	4.6	45,882	212	123	118	6.1	45,882	265	154	148	7.6	45,882
2400 2500	159 159	92 92	88 88	4.4 4.2	49,757 53,789	212 212	123 123	118 118	5.9 5.6	49,757 53,789	265 265	154 154	147 147	7.3 7.0	49,757 53,789
2550	159	92	88	4.2 4.1	55,655	212	123	117	5.5	55,655	265	154	147	6.9	55,655
2600	159	92	88	4.0	57,979	212	123	117	5.4	57,979	265	154	146	6.8	57,979
2700	159	92	88	3.9	62,325	212	123	117	5.2	62,325	265	154	146	6.5	62,325
2800	159	92	87	3.8	66,829	212	123	116	5.0	66,829	265	154	145	6.3	66,829
2850 2900	159 159	92 92	87 87	3.7 3.6	68,906 71,489	212 212	123 123	116 116	4.9 4.8	68,906 71,489	265 265	154 154	145 145	6.2 6.1	68,906 71,489
3000	159	92	87	3.5	76,307	212	123	116	4.7	76,307	265	154	145	5.9	76,307
3100	159	92	86	3.4	81,282	212	123	115	4.5	81,282	265	154	144	5.7	81,282
3150	159	92	86	3.3	83,571	212	123	115	4.5	83,571	265	154	144	5.6	83,571
3200	159	92	86 96	3.3	86,413	212	123	115	4.4	86,413	265	154	144	5.5	86,413
3300 3400	159 159	92 92	86 86	3.2 3.1	91,702 97,148	212 212	123 123	115 114	4.3 4.1	91,702 97,148	265 265	154 154	143 143	5.3 5.2	91,702 97,148
3450	159	92	86	3.1	99,650	212	123	114	4.1	99,650	265	154	143	5.1	99,650
3600	159	92	85	2.9	108,511	212	123	114	3.9	108,511	265	154	142	4.9	108,511
3800	159	92	85	2.8	120,503	212	123	113	3.7	120,503	265	154	141	4.6	120,503
4000	159	92	84	2.6	133,123	212	123	113	3.5	133,123	265	154	141	4.4	133,123

Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -66 %; lateral displacement: -50 %; angular movement: -66 %. Angular movement only possible with guided external support ring.

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN6. In case of deviating flange dimensions, please contact us.

> with internal vacuum rings, with external support rings

The content						Install	ation le	nath (L) at de	sian pr	essure_					
Movement	up to 6	bar L ₅ =	650 mm	– U131A	U134A			<u> </u>				oar L = 1	,050 mn	1 – U151 <i>A</i>	U154A	
November				3.3.7									,	J.J.,	- 15 111	
		Move	ement		۸					Λ		Move	ment		۸	
1999 30	★			₩ ±°		→					→			±°		
159 30 114 50.8 539 212 41 150 58.6 539 265 51 190 64.0 539 150 159 30 111 42.6 76.6 212 41 150 58.6 67.0 25.5 51 187 60.4 20.9 20.9 25.0 25.5 51 188 57.0 76.5 20.9 25.0 25.5 51 188 57.0 76.5 20.9 25.0	159	30	118	61.5	353	212	41	158	67.9	353	265	51	197	72.0	353	100
159 30																
199 30																
1599 30 109 36.4 10.29 212 41 145 44.5 10.29 255 51 181 50.9 10.29 250 159 30 106 27.7 17.13 212 41 141 35.1 17.13 265 51 178 43.6 35.0 20.05 35.0																
159 30 107 315 1346 212 41 414 394 1346 225 51 178 48.8 1346 300 159 30 104 24,7 2,075 212 41 419 39.1 6.0 2.05 51 176 41.3 7.713 35.5 159 30 103 22,2 2,507 212 41 139 31.6 2,075 265 51 174 37.6 2,075 400 159 30 102 202 2,271 212 41 136 26.2 2,971 265 51 170 31.6 2,971 500 159 30 101 185 3.442 212 41 136 26.2 2,971 265 51 170 31.6 2,971 500 159 30 100 17.0 4.015 212 41 134 22.3 4.015 265 51 167 27.2 4.015 600 159 30 30 39 41.7 5.220 212 41 134 22.3 4.015 265 51 167 27.2 4.015 600 159 30 39 41.7 5.220 212 41 134 22.3 4.015 265 51 167 27.2 4.015 600 159 30 39 41.7 5.230 212 41 131 18.2 5.386 265 51 165 23.7 5.230 700 159 30 39 41.7 5.230 212 41 131 18.2 5.386 265 51 165 23.7 5.230 700 159 30 39 71 12.2 7.288 71 41 131 18.2 5.386 265 51 164 22.3 27.5 5.386 750 159 30 97 12.2 7.288 212 41 139 17.1 6.604 265 51 165 23.7 7.288 285 159 30 96 11.6 8.183 212 41 128 13.8 8.123 265 51 161 18.9 8.123 900 159 30 96 10.8 8.888 27.2 41 31.8 27.3 8.258 265 51 161 18.9 8.123 900 159 30 96 10.8 8.888 27.2 41 41 128 13.8 8.399 265 51 161 18.9 8.123 900 159 30 95 9.5 11,652 212 41 128 13.8 8.385 265 51 160 17.1 9.799 1000 159 30 95 9.5 11,652 212 41 128 13.5 8.123 265 51 161 18.9 8.123 900 159 30 94 4.7 13.698 212 41 128 13.5 8.123 265 51 161 18.9 8.123 900 159 30 95 9.5 11,652 212 41 128 13.5 8.123 265 51 169 160 17.1 9.799 1000 159 30 94 4.7 3.698 212 41 128 13.5 8.																
1999 30																
199 30 103 22.2 2.507 212 41 137 28.7 2.507 265 51 172 34.4 2.507 50 159 30 101 18.5 3.442 212 41 138 24.2 24.1 3.442 265 51 176 29.2 3.442 50 159 30 100 17.0 4.015 212 41 138 24.1 3.442 265 51 169 29.2 3.442 50 159 30 100 17.0 4.015 212 41 138 24.1 3.442 265 51 169 29.2 3.442 50 159 30 99 14.7 5.230 212 41 131 18.2 5.336 265 51 166 27.4 4.560 600 159 30 99 14.7 5.230 212 41 131 18.2 5.336 265 51 166 22.4 5.230 700 159 30 98 13.8 5.836 212 41 131 18.2 5.336 265 51 166 22.3 5.230 700 159 30 98 13.0 6.604 212 41 130 16.1 7.268 265 51 166 21.7 6.604 800 159 30 97 12.2 7.268 212 41 130 16.1 7.268 265 51 162 21.1 6.604 800 159 30 97 12.2 7.268 212 41 130 16.1 7.268 265 51 162 21.1 6.604 800 159 30 97 12.2 7.268 212 41 130 16.1 7.268 265 51 166 80.1 159 30 96 10.4 8.858 212 41 128 14.5 8.858 265 51 166 80.1 8.858 950 159 30 96 10.4 9.799 212 41 129 15.3 8.123 265 51 161 18.9 8.123 900 159 30 95 9.5 11.652 212 41 128 14.5 8.858 265 51 160 17.1 9.799 1000 159 30 95 9.5 11.652 212 41 127 12.2 61 1.652 265 51 158 15.6 11.652 1000 159 30 95 9.5 11.652 212 41 127 12.2 61 1.652 265 51 158 15.6 11.652 1000 159 30 94 8.1 1.5770 212 41 125 10.7 15.770 265 51 158 15.6 11.652 1000 159 30 94 8.1 1.576 212 41 125 10.7 15.770 265 51 158 15.6 13.3 15.770 159 30 93 7.2 19.162 212 41 126 11.6 12.1 12.0 12.0 15.5 15.5 15.5 15.5 10.0 23.334 159 30 93 7.2 19.162 212 41 128 8.2 8	159	30	105	27.7	1,713	212	41	141	35.1	1,713	265	51	176	41.3	1,713	350
199 30 102 202 2971 212 41 136 26.2 2971 265 51 170 31.6 2.971 509 30 30 101 18.5 3.442 255 31 369 222 3.442 555 31 369 30 30 100 15.8 4.950 212 41 134 22.3 4.015 265 51 1667 27.2 4.015 600 31.9 30 30 99 14.7 5.330 212 41 131 20.7 4.550 265 51 1666 23.7 5.230 750 159 30 98 13.8 5.836 212 41 131 18.2 5.836 265 51 165 23.7 5.230 750 159 30 98 13.8 5.836 212 41 130 17.1 6.600 265 51 164 22.3 2.11 6.604 800 159 30 97 11.6 8.123 212 41 130 17.1 6.600 265 51 164 22.3 2.11 6.604 800 159 30 97 11.6 8.123 212 41 129 15.3 8.123 255 51 161 162 19.9 7.268 830 19.9 30 96 10.4 9.799 212 41 128 13.8 9.799 255 51 161 161 8.9 8.123 900 159 30 96 10.4 9.799 11.650 122 41 128 13.8 9.799 255 51 160 18.0 8.858 950 159 30 95 9.5 11.652 125 41 127 12.6 11.652 255 51 156 11.652 11.0 159 30 95 9.5 11.652 12.5 41 127 12.6 11.652 255 51 156 13.8 11.652 11.0 159 30 95 9.5 11.652 12.5 41 12.5 11.6 11.6 11.6 11.6 12.5 11.6																
1599 30 101 18.5 34.42 212 41 135 24.1 3.442 265 51 1669 29.2 2.442 50.60 1599 30 100 17.0 4.015 212 41 131 42.23 4.550 60.0 1599 30 199 14.7 5.230 212 41 132 21.9 4.560 265 51 166 25.4 4.550 60.0 1599 30 98 13.8 5.866 212 41 131 18.2 5.835 265 51 166 22.3 5.835 750 1599 30 98 13.0 6.604 212 41 131 18.2 5.835 265 51 166 22.3 5.835 750 1599 30 97 12.2 7.268 212 41 130 16.1 7.268 265 51 162 21.1 6.604 80.0 1599 30 97 12.2 7.268 212 41 130 16.1 7.268 265 51 162 21.1 6.604 80.0 1599 30 97 12.2 7.268 212 41 128 13.5 8.858 265 51 162 21.1 6.604 80.0 1599 30 97 12.5 8.858 212 41 128 13.5 8.858 265 51 162 21.1 6.604 80.0 1599 30 96 11.0 8.858 212 41 128 14.5 8.858 265 51 160 16.1 18.9 8.123 90.0 1599 30 96 10.4 9.799 212 41 128 14.5 8.858 265 51 160 17.1 6.999 7.268 80.0 1599 30 95 9.5 11.652 212 41 128 14.5 8.858 265 51 160 17.1 6.999 7.268 80.0 1599 30 95 9.5 11.652 212 41 128 14.5 8.858 265 51 156 13.5 61.6 10.650 10.6 1599 30 95 9.5 11.652 212 41 128 14.5 8.658 265 51 156 13.6 10.605 10.6 10.6 10.0																
159 30 100 17.0 4,015 212 41 134 22.3 4,015 265 51 167 27.2 4,015 600																
159 30 100 15.8 4.560 212 41 132 19.4 5.200 26.5 51 16.6 25.4 4.560 65.0 159 30 98 13.8 5.836 212 41 131 18.2 5.836 26.5 51 16.4 22.3 5.836 750 159 30 98 13.8 5.836 212 41 130 16.1 7.16 6.604 26.5 51 16.4 22.3 5.836 750 159 30 97 12.2 7.688 212 41 130 16.1 7.68 26.5 51 16.3 21.1 6.604 800 159 30 97 11.6 8.288 212 41 120 16.1 7.268 26.5 51 161 18.9 8.123 900 159 30 96 11.0 8.288 212 41 128 14.5 8.858 26.5 51 161 18.9 8.123 900 159 30 96 10.4 9.799 212 41 128 14.5 8.858 26.5 51 160 17.1 9.799 10.605 159 30 95 99 10.605 212 41 128 14.5 8.858 26.5 51 160 17.1 9.799 10.605 159 30 95 99 10.605 212 41 127 13.2 10.605 26.5 51 150 17.1 9.799 10.605 159 30 95 99 10.605 212 41 127 13.2 12.509 26.5 51 158 15.6 11.652 100 159 30 94 8.7 13.623 212 41 126 11.5 13.623 26.5 51 158 15.0 12.509 1150 159 30 94 8.7 13.623 212 41 126 11.5 13.623 26.5 51 158 15.0 12.509 1150 159 30 94 8.7 13.623 212 41 125 10.7 15.770 26.5 51 156 13.8 14.569 1250 159 30 93 7.8 16.787 212 41 125 10.7 15.770 26.5 51 156 13.8 14.569 1250 159 30 93 7.8 16.787 212 41 124 10.3 16.787 26.5 51 155 12.9 16.787 1300 159 30 93 7.8 16.787 212 41 124 10.3 16.787 26.5 51 155 12.9 16.787 1300 159 30 93 7.8 16.787 212 41 124 10.3 16.787 26.5 51 155 12.9 16.787 1300 159 30 93 7.8 16.787 212 41 124 10.3 16.787 26.5 51 154 12.0 13.3 15.770 1300 159 30 93 7.8 16.787 212 41 124 10.3 16.787 26.5 51 154 12.0 13.3 15.770 1300 159 30 93 7.8 16.860 212 41 12																
159 30 98 13.8 5,836 212 41 131 18.2 5,836 265 51 164 22.3 5,836 750 159 30 97 12.2 7,268 212 41 130 16.1 7,768 265 51 163 21.1 6,604 800 159 30 97 11.6 8,123 212 41 129 15.3 8,123 265 51 161 18.9 8,123 90 159 30 96 11.0 8,858 212 41 129 15.3 8,123 265 51 161 18.9 8,258 90 159 30 96 10.4 9,799 212 41 128 13.8 9,799 265 51 160 18.0 8,858 95 159 30 95 99 10,605 212 41 128 13.8 9,799 265 51 160 17.1 9,799 1000 159 30 95 9.5 11,652 212 41 127 12.6 11,652 265 51 158 15.6 11,652 1100 159 30 95 9.5 11,259 212 41 126 11.6 13,623 265 51 158 15.6 11,652 1100 159 30 94 8.7 13,623 212 41 126 11.6 13,623 265 51 158 15.6 11,652 1100 159 30 94 8.1 15,770 212 41 125 10.7 15,770 265 51 156 13.3 14,569 1250 159 30 94 8.1 15,770 212 41 124 10.3 16,787 265 51 156 13.3 14,569 159 159 30 93 7.8 16,787 212 41 124 10.3 16,787 265 51 155 12.4 18,074 1300 159 30 93 7.2 19,162 212 41 124 10.3 16,787 265 51 155 12.4 18,074 1300 159 30 93 7.2 19,162 212 41 124 10.3 16,787 265 51 155 12.4 18,074 1300 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 91 6.2 25,393 212 41 122 8.7 23,154 265 51 154 12.0 19,162 1450 159 30 91 6.2 25,393 212 41 122 8.7 23,154 265 51 154 1.6 20,356 1500 159 30 91 6.2 25,393 212 41 122 8.7 23,154 265 51 154 1.6 20,356 1500 159 30 90 5.4 33,394 212 41 122 8.7 23,154 265 51 154 1.6 20,356 1500 159 30 89 4.6 4.6,882 212 41 114 127 13.6																
159 30 98 12.0 6.604 212 41 120 17.1 6.604 265 51 163 21.1 6.604 800 159 30 97 11.6 8.123 212 41 129 15.3 8.123 265 51 161 18.9 9.7268 850 159 30 96 11.0 8.858 212 41 128 11.8 8.858 265 51 160 18.0 8.858 950 159 30 96 10.4 9.799 212 41 128 11.8 8.799 265 51 160 17.1 9.799 1000 159 30 95 9.5 11.652 212 41 127 13.2 10.605 265 51 159 16.3 10.605 1050 159 30 95 9.5 11.652 212 41 127 12.6 11.652 265 51 159 16.3 10.605 1050 159 30 95 9.5 11.652 212 41 126 12.1 12.509 265 51 158 15.6 11.652 1100 159 30 95 9.5 11.652 212 41 126 12.1 12.509 265 51 158 15.6 12.509 1150 159 30 94 8.7 13.623 212 41 126 11.6 12.1 12.509 265 51 158 15.6 12.509 1150 159 30 94 8.7 13.623 212 41 125 11.1 14.599 265 51 156 13.8 14.4 13.623 125 159 30 94 8.1 15.770 212 41 125 10.7 15.770 265 51 156 13.8 14.659 125 159 30 93 7.5 16.807 212 41 124 10.0 16.707 265 51 155 12.9 16.787 1300 159 30 93 7.5 18.074 212 41 124 10.0 18.074 265 51 155 12.9 16.787 1350 159 30 93 7.2 19.162 212 41 124 10.0 18.074 265 51 155 12.9 11.607 150 159 30 92 6.6 23.154 212 41 122 8.7 23.154 265 51 153 10.6 23.154 1600 159 30 90 5.3 31.952 212 41 122 8.7 23.154 265 51 153 10.6 23.154 1600 159 30 90 5.3 33.99 212 41 122 8.7 23.3394 265 51 151 10.9 23.154 1600 159 30 90 5.3 33.99 212 41 121 7.4 31.952 265 51 151 9.7 23.893 1700 159 30 90 5.3 33.99 212 41 121 7.4 31.952 265 51 151 9.7 23.893 1700 159 30 88 4.2 53.789 212 41 118 5.6 53.789 265 51 14	159	30	99			212	41	132			265	51	165			
159 30 97 12,2 7,268 212 41 130 16.1 7,268 265 51 162 19.9 7,268 850 159 30 96 11.0 8,858 212 41 128 13.8 8,123 265 51 161 18.9 8,123 900 159 30 96 10.4 9,799 212 41 128 13.8 9,799 265 51 160 17.1 9,799 1000 159 30 95 99 10,605 212 41 128 13.8 13.2 10,605 265 51 160 17.1 9,799 1000 159 30 95 99 10,605 212 41 127 12.6 11,652 265 51 159 16.3 10,605 1050 159 30 95 9.5 11,652 212 41 127 12.6 11,652 265 51 158 15.6 11,652 1100 159 30 95 9.1 12,509 212 41 126 11.6 13,623 265 51 158 15.0 12,509 1150 159 30 94 8.7 13,623 212 41 125 11.1 14,559 265 51 158 15.0 12,509 1150 159 30 94 8.1 15,770 212 41 125 11.1 14,559 265 51 156 13.3 14,569 1250 159 30 94 8.1 15,770 212 41 125 11.1 14,559 265 51 156 13.3 14,569 1250 159 30 93 7.8 16,787 212 41 124 10.3 16,787 265 51 156 13.3 14,569 159 159 30 93 7.5 18,074 212 41 124 10.3 16,787 265 51 155 12,4 18,074 1300 159 30 92 7.0 20,366 212 41 124 9.6 19,162 265 51 154 12.0 19,162 1450 159 30 92 7.0 20,366 212 41 122 8.5 24,384 265 51 153 10.9 23,154 1600 159 30 92 6.4 24,384 212 41 122 8.5 24,384 265 51 153 10.9 23,154 1600 159 30 92 6.4 24,384 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 33,599 212 41 121 7.8 28,893 265 51 154 1.6 20,366 1500 159 30 80 4.8 4.0 4.757 212 41 119 6.4 4.764 265 51 149 8.0 4.264 2.200 159 30 80 4.6 4.5882 212 41 119 6.4 4.764 2.55 51 149 8.6 8.6 3.3,994 1950 159 30 80 4.8 4.0 4.757																
159 30 97 11.6 8,123 212 41 129 15.3 8,123 265 51 161 18.9 8,123 90 159 30 96 10.4 9,799 212 41 128 14.5 8.858 265 51 160 17.1 9,799 1000 159 30 95 95 9.9 10.605 212 41 127 13.2 10.605 265 51 150 17.1 9,799 1000 159 30 95 95 9.9 10.605 212 41 127 13.2 10.605 265 51 158 15.6 11,652 1100 159 30 95 95 9.1 12,509 212 41 127 13.2 10.605 265 51 158 15.6 11,652 1100 159 30 94 8.7 13,622 212 41 126 12.1 12,509 265 51 158 15.0 12,509 1150 159 30 94 8.7 13,623 212 41 126 12.1 12,509 265 51 158 15.0 12,509 1150 159 30 94 8.4 14,569 212 41 125 11.1 14,569 265 51 156 13.8 14,569 1250 159 30 94 8.1 15,770 212 41 125 11.1 14,569 265 51 156 13.8 14,569 1250 159 30 93 7.8 16,787 212 41 124 10.0 18,074 265 51 155 12,9 16,787 1350 159 30 93 7.8 16,787 212 41 124 10.0 18,074 265 51 155 12,9 16,787 1350 159 30 93 7.2 19,162 212 41 124 10.0 18,074 265 51 155 12,4 18,074 1400 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 154 12.0 19,162 1450 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 154 12.0 19,162 1450 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 154 10.0 24,384 1650 159 30 90 5.5 33,952 212 41 122 8.7 23,154 265 51 154 10.0 24,384 1650 159 30 90 5.5 33,519 212 41 112 17.4 31,952 265 51 154 41.0 20,339 1700 159 30 89 4.7 4.3,818 212 41 119 6.4 4.2,464 265 51 149 8.0 42,384 1950 159 30 89 4.7 4.7																
159 30 96 11.0 8.858 212 41 128 14.5 8.858 265 51 160 18.0 8.858 9.5 159 30 95 9.9 10.005 212 41 128 13.8 9.799 265 51 159 16.3 10.605 1050 159 30 95 9.9 10.005 212 41 127 12.6 11.652 265 51 159 16.3 10.605 1050 159 30 95 9.5 11.652 212 41 127 12.6 11.652 265 51 158 15.6 11.652 1105 159 30 95 9.1 12.509 212 41 126 11.6 13.623 265 51 158 15.6 11.652 1105 159 30 94 8.7 13.623 212 41 125 11.1 14.569 265 51 158 15.6 11.623 1205 159 30 94 8.1 15.770 212 41 125 11.1 14.569 265 51 156 13.8 14.569 1250 159 30 94 8.1 15.770 212 41 125 11.1 14.569 265 51 156 13.8 14.569 1250 159 30 93 7.8 16.787 212 41 124 10.3 16.787 265 51 156 13.8 14.570 1300 159 30 93 7.5 18.074 212 41 124 10.0 18.074 265 51 155 12.9 16.787 1350 159 30 93 7.2 19.162 212 41 124 10.0 18.074 265 51 155 12.4 18.074 1400 159 30 92 7.0 20.536 212 41 122 8.7 23.154 265 51 154 11.6 20.536 1500 159 30 92 6.6 23.154 212 41 122 8.7 23.154 265 51 153 10.6 24.384 1650 159 30 92 6.6 23.154 212 41 122 8.7 23.154 265 51 153 10.6 24.384 1650 159 30 90 5.4 33.394 212 41 122 8.7 23.394 265 51 151 9.7 28.893 1700 159 30 90 5.4 33.394 212 41 122 7.2 33.394 265 51 151 9.7 28.893 1700 159 30 90 5.4 33.394 212 41 120 7.2 33.394 265 51 151 9.2 31.595 1700 159 30 90 5.4 33.394 212 41 120 7.2 33.394 265 51 151 9.7 28.893 1700 159 30 89 4.6 45.882 212 41 118 6.1 45.882 265 51 144 6.6 6.5 6.2325 2700 159 30 88 4.6 45.882 212 41 119 6.4 42.164 265 51 148																
159 30 96 10.4 9,799 212 41 128 13.8 9,799 265 51 160 17.1 9,799 1000 159 30 95 9.5 11,652 212 41 127 13.2 10,605 265 51 159 16.3 10,605 1050 159 30 95 9.5 11,652 212 41 127 13.2 10,605 265 51 158 15.6 11,652 1100 159 30 95 9.1 12,509 212 41 126 12.1 12,509 265 51 158 15.0 12,509 1150 159 30 94 8.4 14,569 212 41 125 11.1 14,569 265 51 157 14.4 13,623 1200 159 30 94 8.4 14,569 212 41 125 11.1 14,569 265 51 156 13.8 14,569 1250 159 30 93 7.8 16,787 212 41 125 10.7 15,770 265 51 156 13.8 14,569 159 159 30 93 7.8 16,787 212 41 124 10.0 18,074 265 51 155 12,9 16,787 1350 159 30 93 7.2 19,162 212 41 124 10.0 18,074 265 51 155 12,4 18,074 1400 159 30 92 7.0 20,536 212 41 124 9.6 19,162 265 51 154 12.0 19,162 1450 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 154 12.0 20,336 1500 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10,9 23,154 1600 159 30 91 6.2 25,930 212 41 121 7.8 28,893 265 51 153 10,9 23,154 1600 159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 121 7.4 31,952 265 51 159 9.0 33,394 1950 159 30 90 5.7 33,603 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 80 4.8 4.216 41 121 17.8 28,893 265 51 151 9.7 28,893 1800 159 30 80 4.8 4.216 41 110 6.7 38,603 265 51 149 8.3 38,603 210 159 30 80 4.8 4.2 53,789 212 41 117 5.5 55,655 55 148 7.6 45,882 2300 159 30 80 4.8 4.2 53,789 212 41 117 5.2 6.3																
159 30 95 9.5 11,652 212 41 126 12.1 12,509 265 51 158 15.6 11,652 1100 159 30 94 8.7 13,623 212 41 126 12.1 12,509 265 51 158 15.0 12,509 1150 159 30 94 8.4 14,569 212 41 126 11.6 13,623 265 51 158 15.0 12,509 1150 159 30 94 8.4 14,569 212 41 125 11.1 14,569 265 51 156 13.8 14,569 1250 159 30 93 7.8 16,787 212 41 124 10.3 16,787 265 51 156 13.8 14,569 1250 159 30 93 7.8 16,787 212 41 124 10.0 18,074 265 51 155 12.9 16,787 1300 159 30 93 7.5 18,074 212 41 124 10.0 18,074 265 51 155 12.9 16,787 1350 159 30 93 7.2 19,162 212 41 124 10.0 18,074 265 51 155 12.4 18,074 1400 159 30 93 7.2 19,162 212 41 124 9.6 19,162 265 51 154 12.0 19,167 1450 159 30 92 7.0 20,536 212 41 122 8.7 23,154 265 51 154 11.6 20,536 1500 159 30 92 6.4 24,384 212 41 122 8.5 24,384 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 122 8.5 24,384 265 51 153 10.6 24,384 1650 159 30 90 5.5 31,952 212 41 121 7.4 31,952 265 51 151 9.2 31,952 1900 159 30 90 5.5 31,952 212 41 120 7.2 33,394 265 51 151 9.2 31,952 1900 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 148 7.8 43,818 2250 159 30 89 4.6 45,882 212 41 119 6.7 38,603 265 51 148 7.8 43,818 2250 159 30 80 4.7 43,818 212 41 119 6.7 38,603 265 51 148 7.6 48,882 2300 159 30 80 4.7 43,818 212 41 119 6.7 38,603 265 51 148 7.6 48,882 2300 159 30 80 4.8 4.0 57,979 212 41 116 4.9 68,906 265 51 146 6.8 57,979 2600 159 30 87 3.7 68,006 212 41																
159 30 95 9.1 12,509 212 41 126 12.1 12,509 265 51 158 15.0 12,509 150 159 30 94 8.4 14,569 212 41 126 11.6 13,623 265 51 156 13.8 14,569 1250 159 30 94 8.4 14,569 212 41 125 10.7 15,770 265 51 156 13.8 14,569 1250 159 30 93 8.1 15,770 212 41 125 10.7 15,770 265 51 156 13.3 15,770 1300 159 30 93 7.8 16,787 212 41 124 10.3 16,787 265 51 155 12.9 16,787 1350 159 30 93 7.5 18,074 212 41 124 10.3 16,787 265 51 155 12.9 16,787 1350 159 30 93 7.2 19,162 212 41 124 9.6 19,162 265 51 155 12.4 18,074 1400 159 30 93 7.2 19,162 212 41 124 9.6 19,162 265 51 154 12.0 19,162 1450 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 154 12.0 19,162 1450 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 91 6.2 25,390 212 41 122 8.5 24,384 265 51 153 10.9 23,154 1600 159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 152 10.3 25,390 1700 159 30 90 5.4 33,394 212 41 120 7.0 35,199 265 51 151 9.7 28,893 1800 159 30 90 5.4 33,394 212 41 120 7.0 35,199 265 51 150 9.0 33,394 1950 159 30 90 5.4 33,894 212 41 119 6.4 42,164 265 51 149 8.3 38,603 2100 159 30 89 4.8 4.2 4.64 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 80 4.8 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.5 4.4 4.4 4.5 4.4 4.4 4.5 4	159	30	95	9.9	10,605	212	41	127	13.2	10,605	265	51	159	16.3	10,605	1050
159 30 94 8.7 13,623 212 41 126 11.6 13,623 265 51 157 14.4 13,623 120 159 30 94 8.1 15,770 212 41 125 11.1 14,569 265 51 156 13.8 14,569 1250 159 30 94 8.1 15,770 212 41 125 10.7 15,770 265 51 156 13.8 14,569 1250 159 30 93 7.8 16,787 212 41 124 10.3 16,787 265 51 155 12.9 16,787 1350 159 30 93 7.5 18,074 212 41 124 10.0 18,074 265 51 155 12.9 16,787 1350 159 30 93 7.2 19,162 212 41 124 9.6 19,162 265 51 155 12.9 16,787 1350 159 30 92 7.0 20,536 212 41 124 9.6 19,162 265 51 154 11.6 20,536 1500 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 92 6.4 24,384 212 41 122 8.7 23,154 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,330 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 121 7.4 31,952 265 51 150 9.0 33,394 1950 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 89 4.6 45,882 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.6 45,882 212 41 119 6.7 38,603 265 51 148 7.6 45,882 2300 159 30 89 4.6 45,882 212 41 119 6.7 36,603 265 51 149 8.3 38,603 2100 159 30 89 4.6 45,882 212 41 119 6.7 36,603 265 51 149 8.3 38,603 2100 159 30 88 4.7 43,818 212 41 119 6.7 36,603 265 51 149 8.3 38,603 2100 159 30 88 4.0 57,979 212 41 117 5.5 5																
159 30 94 8.4 14,569 212 41 125 11,1 14,569 265 51 156 13.8 14,569 1250 159 30 94 8.1 15,770 212 41 125 10,7 15,770 265 51 156 13.3 15,770 1300 159 30 93 7.8 16,787 212 41 124 10.3 16,787 255 51 155 12.9 16,787 1350 159 30 93 7.5 18,074 212 41 124 10.0 18,074 265 51 155 12.4 18,074 1400 159 30 93 7.2 19,162 212 41 124 9.6 19,162 265 51 154 12.0 19,162 1450 159 30 92 7.0 20,536 212 41 123 9.3 20,536 265 51 154 12.0 19,162 1450 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 91 6.2 25,930 212 41 122 8.5 24,384 265 51 153 10.9 23,154 1600 159 30 91 6.2 25,930 212 41 121 7.8 28,893 265 51 153 10.9 23,154 1600 159 30 90 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 151 9.7 28,893 1800 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 9.0 33,394 1950 159 30 89 4.8 42,164 212 41 119 6.7 43,818 265 51 149 8.0 42,164 2200 159 30 89 4.7 43,818 212 41 119 6.7 43,818 265 51 148 7.8 43,818 2250 159 30 89 4.6 45,882 212 41 118 5.6 53,789 265 51 147 7.3 49,757 2400 159 30 88 4.4 49,757 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.4 49,757 212 41 116 4.7 76,307 265 51 146 6.8 57,979 2600 159 30 88 4.9 57,979 212 41 116 4.7 76,307 265 51 145 6.2 6.3,960 2850 159 30 86 3.4 81,282 212 41 115 4.4																
159 30 94 8.1 15,770 212 41 125 10.7 15,770 265 51 156 13.3 15,770 1300 159 30 93 7.8 16,787 212 41 124 10.3 16,787 265 51 155 12.9 16,787 1330 159 30 93 7.5 18,074 212 41 124 10.0 18,074 265 51 155 12.4 18,074 1400 159 30 93 7.2 19,162 212 41 124 9.6 19,162 265 51 154 12.0 19,162 1450 159 30 92 7.0 20,536 212 41 123 9.3 20,536 265 51 154 12.0 19,162 1450 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 92 6.4 24,384 212 41 122 8.5 24,384 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 122 8.2 25,930 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.6 45,882 212 41 118 6.6 45,882 265 51 148 7.8 43,818 2250 159 30 88 4.4 49,757 212 41 118 5.6 63,789 265 51 147 7.0 63,789 2500 159 30 88 4.4 49,757 212 41 118 5.6 63,892 265 51 148 7.8 43,818 2250 159 30 88 4.4 49,757 212 41 118 5.6 63,892 265 51 147 7.0 63,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 146 6.5 63,262 2700 159 30 87 3.7 68,906 212 41 116 4.8 7.8																
159 30 93 7.8 16,787 212 41 124 10.3 16,787 265 51 155 12.9 16,787 1350 159 30 93 7.5 18,074 212 41 124 10.0 18,074 265 51 155 12.9 16,787 1400 159 30 93 7.2 19,162 212 41 124 9.6 19,162 265 51 154 12.0 19,162 1450 159 30 92 7.0 20,536 212 41 123 9.3 20,536 265 51 154 11.6 20,536 1500 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.6 24,384 1650 159 30 92 6.6 23,434 212 41 122 8.5 24,384 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 122 8.5 24,384 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 121 7.8 28,893 265 51 152 10.3 25,930 1700 159 30 91 6.2 25,930 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 121 7.4 31,952 265 51 151 9.2 23,154 1900 159 30 90 5.4 33,394 212 41 120 7.0 35,199 265 51 150 9.0 33,394 1950 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 150 8.8 35,199 2000 159 30 89 4.8 42,164 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.6 45,882 212 41 119 6.4 42,164 265 51 148 7.6 45,882 2300 159 30 89 4.6 45,882 212 41 119 6.4 42,164 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.1 55,655 212 41 118 5.6 5.0 66,829 265 51 147 7.0 33,799 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 145 6.3 66,829 2800 159 30 87 3.5 68,906 212 41 116 4.9																
159 30 93 7.5 18,074 212 41 124 10.0 18,074 265 51 155 12.4 18,074 1400 159 30 93 7.2 19,162 212 41 123 9.3 20,536 265 51 154 11.6 20,536 1500 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 159 30 91 6.2 25,930 212 41 122 8.5 24,384 265 51 153 10.6 24,384 159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1700 159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 120 7.0 35,199 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 8.8 35,199 2000 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 149 8.3 38,603 210 159 30 89 4.8 42,164 212 41 119 6.7 38,603 265 51 149 8.0 42,164 2200 159 30 89 4.6 45,882 212 41 119 6.2 43,818 265 51 148 7.8 43,818 2250 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 147 7.0 53,789 2500 159 30 88 4.4 49,757 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.2 62,325 265 51 145 6.2 68,906 2800 159 30 88 4.1 55,655 212 41 116 4.7 68,905 265 51 144 5.6 83,571 3150 159 30 87 3.6 71,489 212 41 116 4.7 76,307 265 51 144 5.6 83,571 3150 159 30 86 3.4 81,282 212 41 116 4.7 76,307 265 51 144 5.6 83,571 3150 159 30 86 3.4 81,282 212 41 116 4.7 76,307 265 51 144 5.6 68,906 2850 159 30 86 3.4 81,282 212 41 116 4.7 76,307 265 51 144 5.5																
159 30 92 7.0 20,536 212 41 123 9.3 20,536 265 51 154 11.6 20,536 1500 159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 91 6.2 25,930 212 41 122 8.2 25,930 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 122 8.2 25,930 265 51 152 10.3 25,930 1700 159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 121 7.8 28,893 265 51 151 9.2 31,952 1900 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 150 8.8 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 8.8 35,199 2000 159 30 90 5.3 35,199 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.4 42,164 265 51 149 8.3 38,603 2100 159 30 89 4.7 43,818 212 41 119 6.4 42,164 265 51 149 8.0 42,164 2200 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.6 53,789 265 51 147 7.3 49,757 240 159 30 88 4.1 55,655 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.2 62,325 265 51 146 6.8 57,979 2600 159 30 88 4.1 56,655 212 41 117 5.2 62,325 265 51 145 6.1 71,489 2900 159 30 87 3.8 66,829 212 41 116 4.9 68,966 265 51 145 6.1 71,489 2900 159 30 86 3.3 83,571 212 41 116 4.7 76,307 265 51 144 5.6 83,571 3150 159 30 86 3.1 97,148 212 41 116 4.1 97,148 265 51 144 5.6 83,571 3150 159 30 86 3.1 97,148 212 41 116 4.1 97,148 26																
159 30 92 6.6 23,154 212 41 122 8.7 23,154 265 51 153 10.9 23,154 1600 159 30 92 6.4 24,384 212 41 122 8.5 24,384 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 122 8.2 25,930 265 51 152 10.3 25,930 1700 159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 121 7.4 31,952 265 51 151 9.7 28,893 1800 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 8.8 35,199 200 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.4 42,164 265 51 149 8.0 42,164 2200 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.4 49,757 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.2 53,789 212 41 117 5.5 55,655 265 51 147 7.0 53,789 2500 159 30 88 4.0 57,979 212 41 117 5.2 6,2325 265 51 146 6.5 6,822 2700 159 30 87 3.5 66,829 212 41 117 5.4 57,979 265 51 145 6.2 68,906 2850 159 30 87 3.5 76,307 212 41 116 4.7 76,307 265 51 145 6.2 68,906 2850 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 8,41 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.1 9,1748 212 41 115 4.5 81,383 265	159	30	93	7.2	19,162	212	41	124	9.6	19,162	265	51	154	12.0	19,162	1450
159 30 92 6.4 24,384 212 41 122 8.5 24,384 265 51 153 10.6 24,384 1650 159 30 91 6.2 25,930 212 41 122 8.2 25,930 265 51 152 10.3 25,930 170 159 30 91 5.8 28,893 212 41 121 7.4 31,952 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 9.0 33,394 1950 159 30 89 4.8 42,164 212 41 119 6.7 38,603 265<																
159 30 91 6.2 25,930 212 41 122 8.2 25,930 265 51 152 10.3 25,930 1700 159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 121 7.4 31,952 265 51 151 9.2 31,952 1900 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 8.8 35,199 2000 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.4 42,164 265 51 149 8.3 38,603 2100 159 30 89 4.7 43,818 212 41 119 6.2 43,818 265 51 148 7.8 43,818 2250 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.3 49,757 2400 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.2 62,325 265 51 146 6.8 57,979 2600 159 30 87 3.8 66,829 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 87 3.8 66,829 212 41 116 4.9 68,906 265 51 145 6.3 66,829 2800 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.6 83,571 3150 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.6 83,571 3150 159 30 86 3.1 97,148 212 41 115 4.5 81,282 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,148 212 41 115 4.1 97,148 265 51 144 5.6 83,571 3160 159 30 86 3.1 97,148 212 41 114 4.1 97,148 265																
159 30 91 5.8 28,893 212 41 121 7.8 28,893 265 51 151 9.7 28,893 1800 159 30 90 5.5 31,952 212 41 120 7.2 33,394 265 51 151 9.2 31,952 1900 159 30 90 5.4 33,394 212 41 120 7.2 33,394 265 51 150 9.0 33,394 1950 159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 8.8 35,199 2000 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.4 42,164 265 51 149 8.0 42,164 2200 159 30 89 4.6 45,882 212 41 119 6.2 43,818 265 51 148 7.6 43,818 2250 159 30 89 4.6 45,882 212 41 118 5.9 49,757 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.3 49,757 2400 159 30 88 4.2 53,789 212 41 118 5.9 49,757 265 51 147 7.0 53,789 2500 159 30 88 4.0 57,979 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.0 57,979 212 41 117 5.5 55,655 515 146 6.8 57,979 2600 159 30 88 4.0 57,979 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 87 3.8 66,829 212 41 116 4.9 68,960 265 51 145 6.1 71,489 2900 159 30 87 3.5 76,307 212 41 116 4.9 68,960 265 51 145 6.1 71,489 2900 159 30 86 3.3 86,413 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 86,413 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 86,613 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 86,613 212 41 115 4.5 81,571 265 51 144 5.5 86,413 3200 159 30 86 3.1 99,650 212 41 115 4.1 99,650 265 51 144 5.5 86,413 3200 159 30																
159 30 90 5.5 31,952 212 41 121 7.4 31,952 265 51 151 9.2 31,952 1900 159 30 90 5.4 33,394 212 41 120 7.0 35,199 265 51 150 9.0 33,394 1950 159 30 90 5.0 38,603 212 41 120 7.0 35,199 265 51 150 8.8 35,199 2000 159 30 89 4.8 42,164 212 41 119 6.7 38,603 265 51 149 8.3 38,603 210 159 30 89 4.8 42,164 212 41 119 6.2 43,818 265 51 148 7.6 45,882 2300 159 30 89 4.6 45,882 212 41 118 5.9 49,757 265 <td></td>																
159 30 90 5.3 35,199 212 41 120 7.0 35,199 265 51 150 8.8 35,199 2000 159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.4 42,164 265 51 149 8.0 42,164 2200 159 30 89 4.7 43,818 212 41 119 6.2 43,818 265 51 148 7.6 45,882 2300 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.3 49,757 2400 159 30 88 4.2 53,789 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 118 5.6 53,789 265 51 147 6.9 55,655 2550 159 30 88 4.0 57,979 212 41 117 5.5 55,655 265 51 146 6.8 57,979 2600 159 30 88 3.9 62,325 212 41 117 5.4 57,979 265 51 146 6.8 57,979 2600 159 30 88 3.9 62,325 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 88 3.9 62,325 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 145 6.3 66,829 2800 159 30 87 3.8 66,829 212 41 116 4.9 68,906 265 51 145 6.3 66,829 2800 159 30 87 3.8 66,829 212 41 116 4.9 68,906 265 51 145 6.3 66,829 2800 159 30 87 3.5 76,307 212 41 116 4.9 68,906 265 51 145 6.3 66,829 2800 159 30 87 3.5 76,307 212 41 116 4.9 68,906 265 51 145 5.9 76,307 3000 159 30 86 3.4 81,282 212 41 116 4.7 76,307 265 51 144 5.6 6.1 71,489 2900 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.6 83,571 3150 159 30 86 3.3 83,571 212 41 115 4.5 83,571 265 51 144 5.6 83,571 3150 159 30 86 3.3 86,413 212 41 115 4.5 83,571 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,042 212 41 115 4.5 83,571 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,042 212 41 115 4.5 83,571 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,042 212 41 115 4.5 83,571 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,042 212 41 115 4.4 86,413 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,042 212 41 115 4.4 86,413 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,042 212 41 115 4.4 86,413 265 51 143 5.1 99,650 3450 159 30 86 3.1 97,048 212 41 114 4.1 97,148 265 51 143 5.1 99,650 3450 159 30 86 3.1 99,650 212 41 114 4.1 97,148 265 51 143 5.1 99,650 3450 159 30 86 3.																
159 30 90 5.0 38,603 212 41 119 6.7 38,603 265 51 149 8.3 38,603 2100 159 30 89 4.8 42,164 212 41 119 6.4 42,164 265 51 149 8.0 42,164 2200 159 30 89 4.7 43,818 212 41 119 6.2 43,818 265 51 148 7.8 43,818 2250 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.3 49,757 2400 159 30 88 4.2 53,789 212 41 118 5.9 49,757 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 147 7.0 53,789 2500 159 30 88 4.0 57,979 212 41 117 5.5 55,655 265 51 147 6.9 55,655 2550 159 30 88 4.0 57,979 212 41 117 5.4 57,979 265 51 146 6.8 57,979 2600 159 30 88 3.9 62,325 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 146 6.5 62,325 2700 159 30 87 3.7 68,906 212 41 116 5.0 68,906 265 51 145 6.2 68,906 2850 159 30 87 3.6 71,489 212 41 116 4.9 68,906 265 51 145 6.2 68,906 2850 159 30 86 3.4 81,282 212 41 116 4.8 71,489 265 51 145 5.9 76,307 3000 159 30 86 3.4 81,282 212 41 116 4.7 76,307 265 51 145 5.9 76,307 3000 159 30 86 3.3 83,571 212 41 116 4.7 76,307 265 51 144 5.7 81,282 3100 159 30 86 3.3 83,571 212 41 115 4.5 81,282 265 51 144 5.6 83,571 3150 159 30 86 3.1 99,650 212 41 115 4.3 91,702 265 51 144 5.5 86,413 3200 159 30 86 3.1 99,650 212 41 115 4.3 91,702 265 51 143 5.2 97,148 3400 159 30 86 3.1 99,650 212 41 115 4.3 91,702 265 51 143 5.2 97,148 3400 159 30 85 2.9 108,511 212 41 114 4.1 99,650 265 51 143 5.1 99,650 3450 159 30 85 2.9 108,511 212 41 114 4.1 99,650 265 51 142 4.9 108,511 3600																
159 30 89 4.8 42,164 212 41 119 6.4 42,164 265 51 149 8.0 42,164 2200 159 30 89 4.7 43,818 212 41 119 6.2 43,818 265 51 148 7.8 43,818 2250 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 147 7.0 53,789 2500 159 30 88 4.0 57,979 212 41 117 5.4 57,979 265 </td <td></td>																
159 30 89 4.7 43,818 212 41 119 6.2 43,818 265 51 148 7.8 43,818 2250 159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.3 49,757 2400 159 30 88 4.2 53,789 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 147 6.9 55,655 2550 159 30 88 3.9 62,325 212 41 117 5.2 62,325 265 </td <td></td>																
159 30 89 4.6 45,882 212 41 118 6.1 45,882 265 51 148 7.6 45,882 2300 159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.3 49,757 2400 159 30 88 4.2 53,789 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 147 7.0 53,789 2500 159 30 88 4.0 57,979 212 41 117 5.2 62,325 51 146 6.8 57,979 2600 159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 <td></td>																
159 30 88 4.4 49,757 212 41 118 5.9 49,757 265 51 147 7.3 49,757 2400 159 30 88 4.2 53,789 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 147 6.9 55,655 2550 159 30 88 4.0 57,979 212 41 117 5.4 57,979 265 51 146 6.8 57,979 2600 159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 146 6.5 62,325 2700 159 30 87 3.7 68,906 212 41 116 4.9 68,906 265 </td <td></td>																
159 30 88 4.2 53,789 212 41 118 5.6 53,789 265 51 147 7.0 53,789 2500 159 30 88 4.1 55,655 212 41 117 5.5 55,655 265 51 147 6.9 55,655 2550 159 30 88 4.0 57,979 212 41 117 5.4 57,979 265 51 146 6.8 57,979 2600 159 30 88 3.9 62,325 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 145 6.2 68,906 2850 159 30 87 3.6 71,489 212 41 116 4.8 71,489 265 </td <td></td>																
159 30 88 4.0 57,979 212 41 117 5.4 57,979 265 51 146 6.8 57,979 2600 159 30 88 3.9 62,325 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 145 6.3 66,829 2800 159 30 87 3.7 68,906 212 41 116 4.9 68,906 265 51 145 6.2 68,906 2850 159 30 87 3.6 71,489 212 41 116 4.8 71,489 265 51 145 6.1 71,489 2900 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 </td <td></td>																
159 30 88 3.9 62,325 212 41 117 5.2 62,325 265 51 146 6.5 62,325 2700 159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 145 6.3 66,829 2800 159 30 87 3.7 68,906 212 41 116 4.9 68,906 265 51 145 6.2 68,906 2850 159 30 87 3.6 71,489 212 41 116 4.8 71,489 265 51 145 6.1 71,489 2900 159 30 87 3.5 76,307 212 41 116 4.7 76,307 265 51 145 5.9 76,307 300 159 30 86 3.4 81,282 212 41 115 4.5 83,571 265 <td></td>																
159 30 87 3.8 66,829 212 41 116 5.0 66,829 265 51 145 6.3 66,829 2800 159 30 87 3.7 68,906 212 41 116 4.9 68,906 265 51 145 6.2 68,906 2850 159 30 87 3.6 71,489 212 41 116 4.8 71,489 265 51 145 6.1 71,489 2900 159 30 87 3.5 76,307 212 41 116 4.7 76,307 265 51 145 5.9 76,307 3000 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 86,413 212 41 115 4.4 86,413 265 </td <td></td>																
159 30 87 3.7 68,906 212 41 116 4.9 68,906 265 51 145 6.2 68,906 2850 159 30 87 3.6 71,489 212 41 116 4.8 71,489 265 51 145 6.1 71,489 2900 159 30 87 3.5 76,307 212 41 116 4.7 76,307 265 51 145 5.9 76,307 3000 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 83,571 212 41 115 4.5 83,571 265 51 144 5.6 83,571 3150 159 30 86 3.3 86,413 212 41 115 4.4 86,413 265 </td <td></td>																
159 30 87 3.6 71,489 212 41 116 4.8 71,489 265 51 145 6.1 71,489 2900 159 30 87 3.5 76,307 212 41 116 4.7 76,307 265 51 145 5.9 76,307 3000 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 83,571 212 41 115 4.5 83,571 265 51 144 5.6 83,571 3150 159 30 86 3.3 86,413 212 41 115 4.4 86,413 265 51 144 5.5 86,413 3200 159 30 86 3.2 91,702 212 41 115 4.3 91,702 265 </td <td></td>																
159 30 87 3.5 76,307 212 41 116 4.7 76,307 265 51 145 5.9 76,307 3000 159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 83,571 212 41 115 4.5 83,571 265 51 144 5.6 83,571 3150 159 30 86 3.3 86,413 212 41 115 4.4 86,413 265 51 144 5.5 86,413 3200 159 30 86 3.2 91,702 212 41 115 4.3 91,702 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,148 212 41 114 4.1 97,148 265 </td <td></td>																
159 30 86 3.4 81,282 212 41 115 4.5 81,282 265 51 144 5.7 81,282 3100 159 30 86 3.3 83,571 212 41 115 4.5 83,571 265 51 144 5.6 83,571 3150 159 30 86 3.3 86,413 212 41 115 4.4 86,413 265 51 144 5.5 86,413 3200 159 30 86 3.2 91,702 212 41 115 4.3 91,702 265 51 144 5.5 86,413 3200 159 30 86 3.1 97,148 212 41 114 4.1 97,148 265 51 143 5.2 97,148 3400 159 30 86 3.1 99,650 212 41 114 4.1 99,650 265 </td <td></td>																
159 30 86 3.3 86,413 212 41 115 4.4 86,413 265 51 144 5.5 86,413 3200 159 30 86 3.2 91,702 212 41 115 4.3 91,702 265 51 143 5.3 91,702 3300 159 30 86 3.1 97,148 212 41 114 4.1 97,148 265 51 143 5.2 97,148 3400 159 30 86 3.1 99,650 212 41 114 4.1 99,650 265 51 143 5.1 99,650 3450 159 30 85 2.9 108,511 212 41 114 3.9 108,511 265 51 142 4.9 108,511 3600 159 30 85 2.8 120,503 212 41 113 3.7 120,503 265 51 141 4.6 120,503 3800																
159 30 86 3.2 91,702 212 41 115 4.3 91,702 265 51 143 5.3 91,702 3300 159 30 86 3.1 97,148 212 41 114 4.1 97,148 265 51 143 5.2 97,148 3400 159 30 86 3.1 99,650 212 41 114 4.1 99,650 265 51 143 5.1 99,650 3450 159 30 85 2.9 108,511 212 41 114 3.9 108,511 265 51 142 4.9 108,511 3600 159 30 85 2.8 120,503 212 41 113 3.7 120,503 265 51 141 4.6 120,503 3800																
159 30 86 3.1 97,148 212 41 114 4.1 97,148 265 51 143 5.2 97,148 3400 159 30 86 3.1 99,650 212 41 114 4.1 99,650 265 51 143 5.1 99,650 3450 159 30 85 2.9 108,511 212 41 114 3.9 108,511 265 51 142 4.9 108,511 3600 159 30 85 2.8 120,503 212 41 113 3.7 120,503 265 51 141 4.6 120,503 3800																
159 30 86 3.1 99,650 212 41 114 4.1 99,650 265 51 143 5.1 99,650 3450 159 30 85 2.9 108,511 212 41 114 3.9 108,511 265 51 142 4.9 108,511 3600 159 30 85 2.8 120,503 212 41 113 3.7 120,503 265 51 141 4.6 120,503 3800																
159 30 85 2.9 108,511 212 41 114 3.9 108,511 265 51 142 4.9 108,511 3600 159 30 85 2.8 120,503 212 41 113 3.7 120,503 265 51 141 4.6 120,503 3800																
159 30 85 2.8 120,503 212 41 113 3.7 120,503 265 51 141 4.6 120,503 3800																

Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. Angular movement only possible with guided external support ring.

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

U132A U142A U152A

> with embedded vacuum rings

U135A U145A U155A

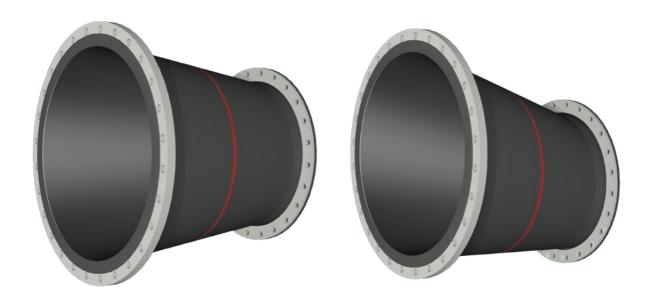
> with embedded vacuum rings, with external support rings

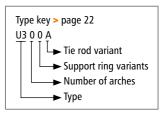
					Install	ation le	ngth (L	_E) at de	sign pre	essure					
	up to 6	bar L _E =	650 mm	– U132A				-	– U142A		up to 6 k	oar $L_E = 1$	1,050 mm	– U152A	U155A
							higher pr	essures o	n request						
		Move	ment		Α.		Move	ment		Α.		Move	ment		Α .
Ø	+[^]-		ξΉ	₹ ₹		+[]-		ξΉ	₹ ₹		+[^]-		ξΉ	\longleftrightarrow	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100	105	28	115	59.8	320	140	38	154	66.5	320	175	47	192	70.7	320
125	105	28	113	54.0	405	140	38	150	61.5	405	175	47	188	66.4	405
150 175	105 105	28 28	111 109	48.9 44.5	499 625	140 140	38 38	148 146	56.9 52.7	499 625	175 175	47 47	185 182	62.3 58.5	499 625
200	105	28 28	109	44.5 40.7	716	140	38	146	52.7 49.0	716	175	47	180	55.0	716
250	105	28	106	34.5	973	140	38	141	42.6	973	175	47	177	48.8	973
300	105	28	104	29.8	1,282	140	38	139	37.5	1,282	175	47	174	43.6	1,282
350	105	28	103	26.2	1,640	140	38	137	33.3	1,640	175	47	171	39.3	1,640
400 450	105 105	28 28	102 100	23.3 20.9	1,995 2,419	140 140	38 38	135 134	29.9 27.1	1,995 2,419	175 175	47 47	169 167	35.6 32.4	1,995 2,419
500	105	28	99	19.0	2,875	140	38	133	24.7	2,875	175	47	166	29.8	2,875
550	105	28	99	17.4	3,339	140	38	132	22.7	3,339	175	47	164	27.5	3,339
600	105	28	98	16.0	3,904	140	38	130	21.0	3,904	175	47	163	25.5	3,904
650 700	105 105	28 28	97 96	14.8 13.8	4,441 5,102	140 140	38 38	130 129	19.5 18.2	4,441 5,102	175 175	47 47	162 161	23.7 22.2	4,441 5,102
750	105	28	96	12.9	5,701	140	38	128	17.0	5,701	175	47	160	20.9	5,701
800	105	28	95	12.1	6,461	140	38	127	16.0	6,461	175	47	159	19.7	6,461
850	105	28	95	11.4	7,118	140	38	126	15.1	7,118	175	47	158	18.6	7,118
900	105	28	94	10.8	7,964	140	38	126	14.3	7,964	175	47	157	17.6	7,964
950 1000	105 105	28 28	94 93	10.3 9.8	8,692 9,625	140 140	38 38	125 125	13.6 13.0	8,692 9,625	175 175	47 47	156 156	16.8 16.0	8,692 9,625
1050	105	28	93	9.3	10,423	140	38	123	12.4	10,423	175	47	155	15.2	10,423
1100	105	28	93	8.9	11,461	140	38	123	11.8	11,461	175	47	154	14.6	11,461
1150	105	28	92	8.5	12,311	140	38	123	11.3	12,311	175	47	154	14.0	12,311
1200 1250	105 105	28 28	92 92	8.2 7.8	13,417 14,356	140 140	38 38	123 122	10.9 10.4	13,417	175 175	47 47	153 153	13.4 12.9	13,417 14,356
1300	105	28	91	7.6 7.5	15,548	140	38	122	10.4	14,356 15,548	175	47	152	12.9	15,548
1350	105	28	91	7.3	16,559	140	38	121	9.7	16,559	175	47	152	12.0	16,559
1400	105	28	91	7.0	17,837	140	38	121	9.3	17,837	175	47	151	11.5	17,837
1450	105	28	90	6.8	18,918	140	38	120	9.0	18,918	175	47	151	11.2	18,918
1500 1600	105 105	28 28	90 90	6.5 6.1	20,283 22,885	140 140	38 38	120 119	8.7 8.2	20,283 22,885	175 175	47 47	150 149	10.8 10.1	20,283 22,885
1650	105	28	89	6.0	24,108	140	38	119	7.9	24,108	175	47	149	9.8	24,108
1700	105	28	89	5.8	25,645	140	38	119	7.7	25,645	175	47	148	9.5	25,645
1800	105	28	89	5.5	28,592	140	38	118	7.3	28,592	175	47	148	9.0	28,592
1900	105	28 28	88	5.2	31,636	140	38	117	6.9	31,636	175	47 47	147	8.6	31,636
1950 2000	105 105	28	88 88	5.0 4.9	33,071 34,867	140 140	38 38	117 117	6.7 6.6	33,071 34,867	175 175	47 47	147 146	8.3 8.1	33,071 34,867
2100	105	28	87	4.7	38,256	140	38	116	6.3	38,256	175	47	146	7.8	38,256
2200	105	28	87	4.5	41,801	140	38	116	6.0	41,801	175	47	145	7.4	41,801
2250	105	28	87	4.4	43,447	140	38	116	5.8	43,447	175	47	145	7.2	43,447
2300 2400	105 105	28 28	87 86	4.3 4.1	45,503 49,363	140 140	38 38	115 115	5.7 5.5	45,503 49,363	175 175	47 47	144 144	7.1 6.8	45,503 49,363
2500	105	28	86	3.9	53,379	140	38	115	5.3	53,379	175	47	143	6.5	53,379
2550	105	28	86	3.9	55,238	140	38	114	5.2	55,238	175	47	143	6.4	55,238
2600	105	28	86	3.8	57,553	140	38	114	5.1	57,553	175	47	143	6.3	57,553
2700 2800	105 105	28 28	85 85	3.6	61,883 66,371	140 140	38 38	114 113	4.9 4.7	61,883	175 175	47	142 142	6.0 5.8	61,883
2850	105	28	85	3.5 3.5	68,442	140	38	113	4.7	66,371 68,442	175	47 47	142	5.7	66,371 68,442
2900	105	28	85	3.4	71,016	140	38	113	4.5	71,016	175	47	141	5.6	71,016
3000	105	28	85	3.3	75,818	140	38	113	4.4	75,818	175	47	141	5.4	75,818
3100	105	28	84	3.2	80,777	140	38	112	4.2	80,777	175	47	140	5.3	80,777
3150 3200	105 105	28 28	84 84	3.1 3.1	83,060 85,893	140 140	38 38	112 112	4.2 4.1	83,060 85,893	175 175	47 47	140 140	5.2 5.1	83,060 85,893
3300	105	28	84	3.0	91,166	140	38	112	4.0	91,166	175	47	140	5.0	91,166
3400	105	28	84	2.9	96,597	140	38	111	3.9	96,597	175	47	139	4.8	96,597
3450	105	28	83	2.9	99,091	140	38	111	3.8	99,091	175	47	139	4.7	99,091
3600	105	28	83	2.7	107,928	140	38	111	3.7	107,928	175	47	139	4.5	107,928
3800 4000	105 105	28 28	83 82	2.6 2.5	119,888 132,477	140 140	38 38	110 110	3.5 3.3	119,888 132,477	175 175	47 47	138 137	4.3 4.1	119,888 132,477
									ion: -0 %: la						

Reduction of movement for expansion joints with PTFE lining: axial compression: -0 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. Angular movement only possible with guided external support ring.

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions




High flexible FPM rubber bellow for a tumbler screening machine

Universal expansion joint, type U142A with PTFE lining for a sulphuric acid reclamation plant \varnothing 2,800 mm, -0.15 bar, 80 °C

U300A-konz U300A-exz Ø 80 - 1,600 mm

Concentric or eccentric reducing expansion joint

Design: Concentric or eccentric reducing rubber bellows with full faced

rubber flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single- or multi-part backing flanges. At high pressure, large diameters and extreme reductions with self-sealing rubber bulge and single-part swivel backing flange at the large diameter. In compliance with PED 2014/68/EU, FSA Technical

Handbook and ASTM F1123 - 87.

Diameters: \emptyset 80 to 1,600 mm, custom diameters possible

Length: Standard $L_E = 150 \text{ to } 2,150 \text{ mm (> page } 128-129)$

Custom length on request

Pressure: Up to 10 bar depending on diameter and length

Movement: For small axial and lateral movements

→ ‡ (> page 128–129)

Application:

Plant construction, desulphurisation plants, sand/gravel extraction industry, dredgers, food processing e.g. in gypsum suspension conveyance lines, on pumps, vessels, as vacuum/pressure hoses

instructions at: www.ditec-adam.de/ en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part round backing flanges with clearance holes

For high pressure, large diameters and extreme reductions, single-part round swivel backing flange with clearance holes and a groove to accept a rubber bulge at the

large diameter

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

End fitting

Full faced flanges

Swivel flanged with metal core

Swivel flanged with rubber bulge

Full faced / swivel flanged combination

126 Universal expansion joints with full faced rubber flange

Accessories

Tie rods: Type U300**E**: Tie rods mounted outside in spherical bearings and ball disks

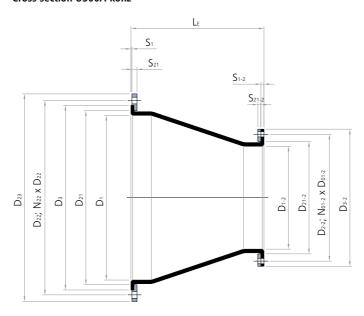
to take up the thrust forces from pressure

Type U300M: Tie rods mounted outside and inside in spherical bearings and ball disks

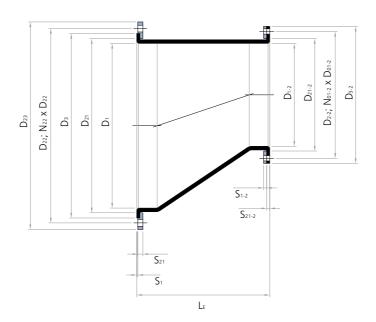
to take up the thrust forces from pressure and vacuum

Protective covers: Ground protective shield

Protective shield or cover


Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner


Conical flow liner

Telescoping flow liner (> page 57)

Cross section U300A-konz

Cross section U300A-exz

Conical expansion joints, type U300A on the suction and discharge side of a gypsum slurry pump in a desulphurization unit of a power plant

U300A-konz

> concentric

Instal	lation le	ngth (L	E) at des	ign pre	ssure
				up to 6 ba	
				ressures or	
	tial combir			Movement	
Ø	Ø	Length	-[]-		ĔΆ
D ₁	D ₁₋₂ mm	mm	mm	mm	+mm
100	80	160	2	2	5
125	80	235	3	2	7
123	100	175	2	2	5
150	80 100	310 250	4	3	9 7
150	125	175	2	2	5
	80	460	7	5	12
200	100	400	6	4	11
	125	325	5	3	9
	150 80	250 660	3 10	3 7	7 17
	100	600	9	6	15
250	125	525	8	5	13
	150	450	7	5	11
	200 80	300 810	4 12	3 8	8 19
	100	750	12	8	18
300	125	675	10	7	16
300	150	600	9	6	14
	200	450	7	5	11
	250 80	350 960	5 15	4 10	8 22
	100	900	14	9	21
	125	825	13	8	19
350	150	750	12	8	17
	200 250	600 500	10 7	6 5	14 12
	300	350	5	4	8
	100	1050	17	11	23
	125	975	16	10	22
400	150 200	900 750	15 12	9 8	20 17
400	250	650	10	7	15
	300	500	8	5	11
	350	350	5	4	8
	150 200	1250 1100	21 19	13 11	26 23
	250	1000	17	10	23
500	300	850	14	9	18
	350	700	11	7	15
	400 450	550 400	9	6 4	12 8
	200	1400	25	14	28
	250	1300	23	13	26
	300	1150	21	12	23
600	350 400	1000 850	18 15	10 9	20 17
	450	700	12	7	14
	500	550	9	6	11
	250	1600	30	16	31
	300	1450	27	15	28
700	350 400	1300 1150	24 21	13 12	25 22
700	450	1000	18	10	19
	500	850	15	9	17
	600	550	9	6	11
	300 350	1800 1650	35 32	18 17	34 31
	400	1500	29	15	28
800	450	1350	26	14	25
	500	1200	23	12	23
	600	900	16	9	17
	700	600	10	6	11

Instal	lation le	ength (L		sign pres	
				up to 6 bar	
			higher p	ressures or	request
Poten	tial combir	nation		Movement	
Ø	Ø	Length	74		M
D ₁	D ₁₋₂		74	F-71	\mathcal{N}
mm	mm	mm	mm	mm	±mm
	350	1950	39	20	36
	400 450	1800 1650	36 33	18 17	33 30
900	500	1500	30	15	27
	600	1200	24	12	22
	700	900	17	9	16
	800	600	10	6	11
	400	2100	43	21	37
	450	1950	40	20	35
1000	500	1800	37	18	32
1000	600 700	1500 1200	31 24	15 12	27 21
	800	900	17	9	16
	900	600	10	6	11
	450	2300	49	23	40
	500	2150	46	22	37
	600	1850	39	19	32
1100	700	1550	32	16	27
	800 900	1250 950	26 18	13 10	22 16
	1000	650	11	7	11
	500	2450	53	25	42
	600	2150	47	22	37
	700	1850	40	19	31
1200	800	1550	33	16	26
	900	1250	26	13	21
	1000 1100	950 650	19 11	10 7	16 11
	600	2450	55	25	41
	700	2150	48	22	36
	800	1850	41	19	31
1300	900	1550	34	16	26
	1000	1250	27	13	21
	1100	950 650	19 12	10 7	16 11
	1200 700	650 2500	57	25	41
	800	2200	50	22	36
	900	1900	43	19	31
1400	1000	1600	36	16	26
	1100	1300	28	13	21
	1200	1000	20	10	16
	1300 800	700 2500	12 59	7 25	11 40
	900	2200	59	23	35
	1000	1900	44	19	31
1500	1100	1600	36	16	26
	1200	1300	29	13	21
	1300	1000	21	10	16
	1400	700	12	7	11
	900 1000	2500 2200	60 53	25 22	40 35
	1100	1900	45	19	30
1600	1200	1600	37	16	25
	1300	1300	29	13	21
	1400	1000	21	10	16
	1500	700	13	7	11

The specified movements may vary depending on the design pressure. Also available with restraints type "E" or type "M". Intermediate sizes or other diameter combinations as well as other

length on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN6. In case of deviating flange dimensions, please contact us.

U300A-exz

> eccentric

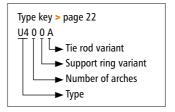
Installation length (L_E) at design pressure

		- J - (-		up to 6 bar	
_				ressures or	
р.,			mgner p		
Poten	tial combir	nation		Movement	
Ø	Ø	Length	- M₄		Ϋ́
D ₁	D ₁₋₂		M	\sim	\sim
mm	mm	mm	mm	mm	±mm
100	80	160	2	2	5
125	80	235	3	2	7
	100	175	2	2	5
	80	310	4	3	9
150	100	250	3	3	7
	125	175	2	2	5
	80	460	7	5	12
200	100	400	6	4	11
	125	325 250	5 3	3	9 7
	150				
	80 100	660 600	10 9	7 6	17 15
250	125	525	8	5	
250	150	450	7	5 5	13 11
	200	300	4	3	8
	80	810	12	8	19
	100	750	12	8	18
	125	675	10	7	16
300	150	600	9	6	14
	200	450	7	5	11
	250	350	5	4	8
	80	960	15	10	22
	100	900	14	9	21
	125	825	13	8	19
350	150	750	12	8	17
	200	600	10	6	14
	250	500	7	5	12
	300	350	5	4	8
	100	1050	17	11	23
	125	975	16	10	22
	150	900	15	9	20
400	200	750	12	8	17
	250	650	10	7	15
	300	500	8	5	11
	350	350	5	4	8
	150 200	1250 1100	21 19	13 11	26 23
	250	1000	17	10	21
500	300	850	14	9	18
300	350	700	11	7	15
	400	550	9	6	12
	450	400	6	4	8
	200	1400	25	14	28
	250	1300	23	13	26
	300	1150	21	12	23
600	350	1000	18	10	20
	400	850	15	9	17
	450	700	12	7	14
	500	550	9	6	11
	250	1600	30	16	31
	300	1450	27	15	28
700	350	1300	24	13	25
700	400	1150	21	12	22
	450	1000	18	10	19
	500	850	15	9	17
	600	550	9	6	11
	300 350	1800 1650	35 32	18 17	34 31
	400	1500	29	15	28
800	450	1350	26	14	26 25
300	500	1200	23	12	23
	600	900	16	9	17
	700	600	10	6	11

Instal	lation le	ength (L	_E) at des	ign pre	ssure
				up to 6 bai	r
			higher p	ressures or	request
Potent	tial combin	nation	<u> </u>	Movement	
			Lol	I a I	
Ø	Ø	Length	- 14	* *	ĮΫ́
D ₁	D ₁₋₂		M	\sim	104
mm	mm	mm	mm	mm	±mm
	350	1950	39	20	36
	400	1800	36	18	33
000	450	1650	33	17	30
900	500	1500	30	15	27
	600	1200	24	12	22
	700	900	17	9	16
	800	600	10	6	11
	400	2100	43	21	37 25
	450	1950	40	20	35
1000	500	1800	37	18	32
1000	600	1500 1200	31 24	15 12	27 21
	700				
	800 900	900 600	17 10	9 6	16 11
	450		49	23	40
	500	2300 2150	49	23	40 37
	600	1850	39	19	32
1100	700	1550	32	16	27
1100	800	1250	26	13	22
	900	950	18	10	16
	1000	650	11	7	11
	500	2450	53	25	42
	600	2150	47	22	37
	700	1850	40	19	31
1200	800	1550	33	16	26
1200	900	1250	26	13	21
	1000	950	19	10	16
	1100	650	11	7	11
	600	2450	55	25	41
	700	2150	48	22	36
	800	1850	41	19	31
1300	900	1550	34	16	26
	1000	1250	27	13	21
	1100	950	19	10	16
	1200	650	12	7	11
	700	2500	57	25	41
	800	2200	50	22	36
	900	1900	43	19	31
1400	1000	1600	36	16	26
	1100	1300	28	13	21
	1200	1000	20	10	16
	1300	700	12	7	11
	800	2500	59	25	40
	900	2200	51	22	35
	1000	1900	44	19	31
1500	1100	1600	36	16	26
	1200	1300	29	13	21

The specified movements may vary depending on the design pressure. Also available with restraints type "E" or type "M". Intermediate sizes or other diameter combinations as well as other

Intermediate sizes or other diameter combinations as well as other length on request.


The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN6. In case of deviating flange dimensions, please contact us.

U400A Ø 300 - 4,000 mm

Ø up to 4,000 x 4,000 mm Ø up to 6,000 x 3,000 mm

- > Type U400A without support ring
- > Type U403A with support ring

Vacuum donut with one arch facing inward

Design: High elastic, facing inwards single wide arch rubber bellows with

> full faced rubber flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single- or multi-part backing flanges. For pressure external support ring optional. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87. Note: The arch reduces the pipe cross-section (ask for mating

flange dimensions).

Dimensions: Ø 300 to 4,000 mm

> \square up to 4,000 x 4,000 mm or \square up to 6,000 x 3,000 mm Custom diameters / rectangular cross-sections possible

Length: Standard $L_E = 100$ to 500 mm (> page 134–135)

Custom length on request

Pressure: For permanent vacuum operations

Over-pressure only allowed with external support ring

For axial, lateral and angular movements Movement:

+ t t page 134–135)

Application: Cooling water systems, plant construction, petrochemical and refinery technology e. g. in vacuum lines, acid lines and on vessels

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part, round backing flanges with clearance holes

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials:Carbon steel, stainless steel or aluminiumCoating:Primed, hot-dip galvanised, special paint

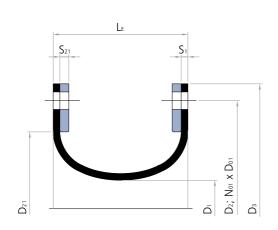
Accessories

Protective covers: Ground protective shield

Protective shield or cover

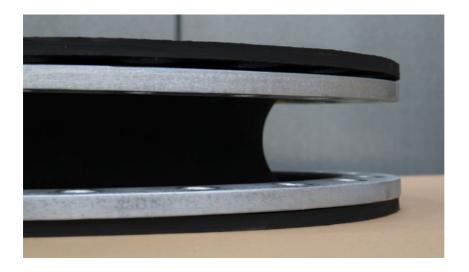
Fire protective cover (> page 58)

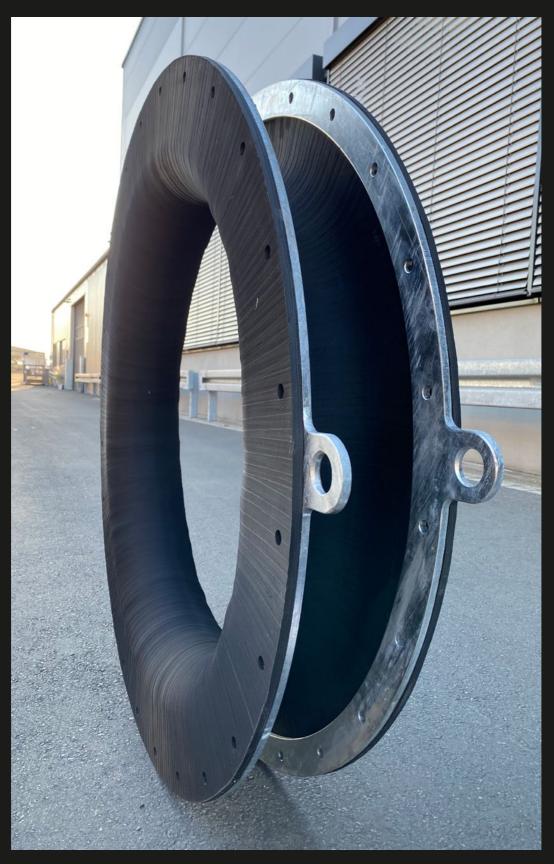
Flow liners: Cylindrical flow liner


Conical flow liner

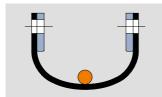
Telescoping flow liner (> page 57)

Support rings


TYPE	Support rings	Support ring	Pressure Movement					
U400A		None	For vacuum up to 0.05 bar absolute Over-pressure not allowed	> page 134				
U403A		External in the arch	Depending on the diameter up to 6 bar, for vacuum up to 0.05 bar absolute	> page 135				
Materials	S							
Carbon st	eel, hot-dip galvanised	Stair	Stainless steel					


Cross section U400A

Example: Type U403A


U400A for permanent vacuum operation, size \varnothing 800 mm

U400Awithout support ring

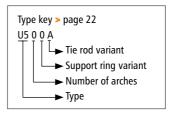
	Installation length $(L_{\scriptscriptstyle E})$ at design pressure												
	up t	to 6 bar L	_E = 250	mm	up 1	to 6 bar L	_E = 300	mm	up to 6 bar $L_E = 350 \text{ mm}$				
					high	er pressur	es on rec	quest					
	1	Movement	t	Α	Movement A					Movemen	t	Α	
Ø	+1/4	<u>^</u>	M		→ \	*	E.A	M	→ ^-	^ +	£.H		
mm	mm [V]	mm	±mm	cm ²	mm	mm	±mm	cm ²	mm [V]	mm	±mm	cm ²	
300	30	15	18	707	40	20	25	707	50	25	31	707	
350	30	15	18	962	40	20	24	962	50	25	30	962	
400	30	15	18	1,257	40	20	24	1,257	50	25	30	1,257	
450	30	15	17	1,590	40	20	23	1,590	50	25	29	1,590	
500	30	15	17	1,964	40	20	23	1,964	50	25	29	1,964	
550	30	15	17	2,376	40	20	23	2,376	50	25	28	2,376	
600	30	15	17	2,827	40	20	22	2,827	50	25	28	2,827	
650 700	30 30	15 15	17 17	3,318 3,849	40 40	20 20	22 22	3,318 3,849	50 50	25 25	28 28	3,318 3,849	
750	30	15	16	4,418	40	20	22	4,418	50	25	27	4,418	
800	30	15	16	5,027	40	20	22	5,027	50	25	27	5,027	
850	30	15	16	5,675	40	20	22	5,675	50	25	27	5,675	
900	30	15	16	6,362	40	20	21	6,362	50	25	27	6,362	
950	30	15	16	7,088	40	20	21	7,088	50	25	27	7,088	
1000	30	15	16	7,854	40	20	21	7,854	50	25	26	7,854	
1050	30	15	16	8,659	40	20	21	8,659	50	25	26	8,659	
1100	30	15	16	9,503	40	20	21	9,503	50	25	26	9,503	
1150	30	15	16	10,387	40	20	21	10,387	50	25	26	10,387	
1200 1250	30 30	15 15	15 15	11,310 12,272	40 40	20 20	21 21	11,310 12,272	50 50	25 25	26 26	11,310 12,272	
1300	30	15	15	13,273	40	20	20	13,273	50	25	26	13,273	
1350	30	15	15	14,314	40	20	20	14,314	50	25	25	14,314	
1400	30	15	15	15,394	40	20	20	15,394	50	25	25	15,394	
1450	30	15	15	16,513	40	20	20	16,513	50	25	25	16,513	
1500	30	15	15	17,672	40	20	20	17,672	50	25	25	17,672	
1600	30	15	15	20,106	40	20	20	20,106	50	25	25	20,106	
1650	30	15	15	21,383	40	20	20	21,383	50	25	25	21,383	
1700	30	15	15	22,698	40	20	20	22,698	50	25	25	22,698	
1800	30 30	15 15	15 15	25,447	40	20 20	20 19	25,447	50 50	25	24 24	25,447	
1900 1950	30	15	15	28,353 29,865	40 40	20	19	28,353 29,865	50	25 25	24	28,353 29,865	
2000	30	15	15	31,416	40	20	19	31,416	50	25	24	31,416	
2100	30	15	14	34,636	40	20	19	34,636	50	25	24	34,636	
2200	30	15	14	38,013	40	20	19	38,013	50	25	24	38,013	
2250	30	15	14	39,761	40	20	19	39,761	50	25	24	39,761	
2300	30	15	14	41,548	40	20	19	41,548	50	25	24	41,548	
2400	30	15	14	45,239	40	20	19	45,239	50	25	24	45,239	
2500	30	15 15	14	49,087	40	20	19	49,087	50	25	24	49,087	
2550 2600	30 30	15 15	14 14	51,071 53,093	40 40	20 20	19 19	51,071 53,093	50 50	25 25	23 23	51,071 53,093	
2700	30	15	14	57,256	40	20	19	57,256	50	25	23	57,256	
2800	30	15	14	61,575	40	20	19	61,575	50	25	23	61,575	
2850	30	15	14	63,794	40	20	18	63,794	50	25	23	63,794	
2900	30	15	14	66,052	40	20	18	66,052	50	25	23	66,052	
3000	30	15	14	70,686	40	20	18	70,686	50	25	23	70,686	
3100	30	15	14	75,477	40	20	18	75,477	50	25	23	75,477	
3150	30	15	14	77,931	40	20	18	77,931	50	25	23	77,931	
3200	30	15 15	14	80,425	40	20	18	80,425	50	25	23	80,425	
3300 3400	30 30	15 15	14 14	85,530 90,792	40 40	20 20	18 18	85,530 90,792	50 50	25 25	23 23	85,530 90,792	
3450	30	15	14	93,482	40	20	18	93,482	50	25	23	93,482	
3600	30	15	13	101,788	40	20	18	101,788	50	25	22	101,788	
3800	30	15	13	113,412	40	20	18	113,412	50	25	22	113,412	
4000	30	15	13	125,664	40	20	18	125,664	50	25	22	125,664	

Recommended sizes Further possible sizes In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN6. In case of deviating flange dimensions, please contact us.

U403A > with support ring

			ln:	stallatio	n lengt	h (L _E) at	desig	n pressu	ıre			
	up t	o 6 bar L	_{-E} = 250	mm		to 6 bar L			up 1	to 6 bar L	_{-E} = 350	mm
					high	er pressu	res on rec	quest				
	ı	Movement	t	Α	1	Movemen	t	Α	1	Movemen	t	Α
Ø	***				***				***			
mm	mm	mm	±mm	cm ²	mm	mm	±mm	cm ²	mm	mm	±mm	cm ²
300 350	30 30	15 15	18 18	707 962	40 40	20 20	25 24	707 962	50 50	25 25	31 30	707 962
400	30	15	18	1,257	40	20	24	1,257	50	25	30	1,257
450	30	15	17	1,590	40	20	23	1,590	50	25	29	1,590
500	30	15	17	1,964	40	20	23	1,964	50	25	29	1,964
550	30	15	17	2,376	40	20	23	2,376	50	25	28	2,376
600	30	15	17	2,827	40	20	22	2,827	50	25	28	2,827
650	30	15	17	3,318	40	20	22	3,318	50	25	28	3,318
700	30	15	17	3,849	40	20	22	3,849	50	25 25	28	3,849
750 800	30 30	15 15	16 16	4,418 5,027	40 40	20 20	22 22	4,418 5,027	50 50	25 25	27 27	4,418 5,027
850	30	15	16	5,675	40	20	22	5,675	50	25	27	5,675
900	30	15	16	6,362	40	20	21	6,362	50	25	27	6,362
950	30	15	16	7,088	40	20	21	7,088	50	25	27	7,088
1000	30	15	16	7,854	40	20	21	7,854	50	25	26	7,854
1050	30	15	16	8,659	40	20	21	8,659	50	25	26	8,659
1100	30	15	16	9,503	40	20	21	9,503	50	25	26	9,503
1150	30	15	16	10,387	40	20	21	10,387	50	25	26	10,387
1200 1250	30 30	15 15	15 15	11,310 12,272	40 40	20 20	21 21	11,310 12,272	50 50	25 25	26 26	11,310 12,272
1300	30	15	15	13,273	40	20	20	13,273	50	25	26	13,273
1350	30	15	15	14,314	40	20	20	14,314	50	25	25	14,314
1400	30	15	15	15,394	40	20	20	15,394	50	25	25	15,394
1450	30	15	15	16,513	40	20	20	16,513	50	25	25	16,513
1500	30	15	15	17,672	40	20	20	17,672	50	25	25	17,672
1600	30	15	15	20,106	40	20	20	20,106	50	25	25	20,106
1650	30	15	15	21,383	40	20	20	21,383	50	25	25	21,383
1700 1800	30 30	15 15	15 15	22,698 25,447	40 40	20 20	20 20	22,698 25,447	50 50	25 25	25 24	22,698 25,447
1900	30	15	15	28,353	40	20	19	28,353	50	25	24	28,353
1950	30	15	15	29,865	40	20	19	29,865	50	25	24	29,865
2000	30	15	15	31,416	40	20	19	31,416	50	25	24	31,416
2100	30	15	14	34,636	40	20	19	34,636	50	25	24	34,636
2200	30	15	14	38,013	40	20	19	38,013	50	25	24	38,013
2250	30	15	14	39,761	40	20	19	39,761	50	25	24	39,761
2300 2400	30 30	15 15	14 14	41,548 45,239	40 40	20 20	19 19	41,548 45,239	50 50	25 25	24 24	41,548 45,239
2500	30	15	14	49,087	40	20	19	49.087	50	25	24	49,087
2550	30	15	14	51,071	40	20	19	51,071	50	25	23	51,071
2600	30	15	14	53,093	40	20	19	53,093	50	25	23	53,093
2700	30	15	14	57,256	40	20	19	57,256	50	25	23	57,256
2800	30	15	14	61,575	40	20	19	61,575	50	25	23	61,575
2850	30	15	14	63,794	40	20	18	63,794	50	25	23	63,794
2900 3000	30 30	15 15	14 14	66,052 70,686	40	20 20	18 18	66,052 70,686	50 50	25 25	23 23	66,052 70,686
3100	30	15	14	70,686 75,477	40 40	20	18	70,686 75,477	50	25 25	23	70,686 75,477
3150	30	15	14	77,931	40	20	18	77,931	50	25	23	77,931
3200	30	15	14	80,425	40	20	18	80,425	50	25	23	80,425
3300	30	15	14	85,530	40	20	18	85,530	50	25	23	85,530
3400	30	15	14	90,792	40	20	18	90,792	50	25	23	90,792
3450	30	15	14	93,482	40	20	18	93,482	50	25	23	93,482
3600	30	15 15	13	101,788	40	20	18	101,788	50	25	22	101,788
3800 4000	30 30	15 15	13 13	113,412 125,664	40 40	20 20	18 18	113,412 125,664	50 50	25 25	22 22	113,412 125,664


Recommended sizes Further possible sizes In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

U500A Ø 300 - 4,000mm

☑ up to 4,000 x 4,000 mm ☑ up to 6,000 x 3,000 mm

- Type U500A without vacuum ring
- > Type U501A with vacuum ring

Pressure donut with one arch facing outward

Design: High elastic rubber bellows with wide arch facing outwards with

full faced rubber flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single- or multi-part backing flanges. Optional for vacuum, internal support ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87. Note: Bolts must be leak-tight welded to the mating flange.*

Dimensions: Ø 300 to 4,000 mm

Length: Standard $L_E = 100$ to 500 mm (> page 140–141)

Custom length on request

Pressure: Up to 6 bar depending on diameter and length

Vacuum only allowed with vacuum ring

Movement: For axial, lateral and angular movements

Application:

Cooling water systems, plant construction, petrochemical and refinery technology, cooling water systems, plant construction, petrochemical and refinery technology e. g. in vacuum lines, acid lines and on vessels

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Multi-part, round backing flanges with clearance holes

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials:Carbon steel, stainless steel or aluminiumCoating:Primed, hot-dip galvanised, special paint

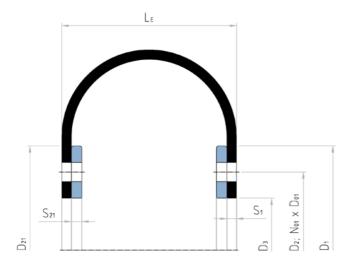
Accessories

Protective covers: Ground protective shield

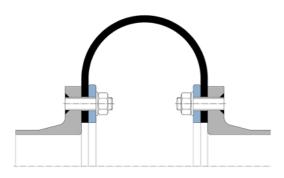
Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner


Conical flow liner

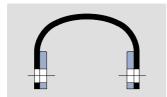
Telescoping flow liner (> page 57)


Support rings

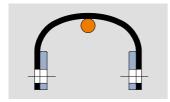
TYPE	Support rings	Vaccum ring		Pressure	Movement			
U500A		None		Depending on diameter and length up to 6 bar Vacuum not allowed	> page 140			
U501A		Internal in the arch		Depending on diameter and length up to 6 bar, for vacuum up to 0,05 bar absolute	> page 141			
Materials	S							
Stainless	steel		Carbon steel, rubberised					

Cross section U500A

* Note:


Bolts leak-tight welded

Type U501A pressure donuts of size \varnothing 2,800 mm installed on the jet thruster of a vessel

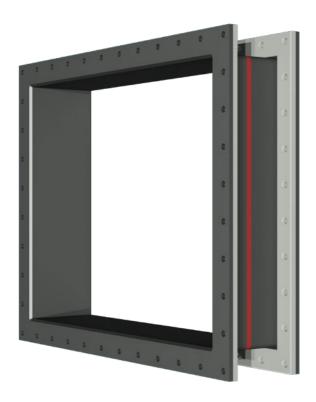


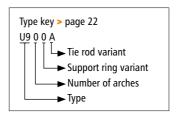
U500A > without vacuum ring

			ln:	stallatio	n lengt	h (L _E) at	desig	n pressu	re			
	up 1	to 6 bar L	_E = 250	mm	up t	to 6 bar L	_E = 300	mm	up 1	to 6 bar L	_{-E} = 350	mm
					high	er pressur	es on rec	quest				
	1	Movement		Α	Movement A				1	Movemen	t	Α
Ø	+				*				*			
mm	mm	mm	±mm	cm ²	mm	mm	±mm	cm ²	mm	mm	±mm	cm ²
300	30	15	18	707	40	20	25	707	50	25	31	707
350	30	15	18	962	40	20	24	962	50	25	30	962
400	30	15	18	1,257	40	20	24	1,257	50	25	30	1,257
450 500	30 30	15 15	17 17	1,590 1,964	40 40	20 20	23 23	1,590 1,964	50 50	25 25	29 29	1,590 1,964
550	30	15	17	2,376	40	20	23	2,376	50	25	28	2,376
600	30	15	17	2,827	40	20	22	2,827	50	25	28	2,827
650	30	15	17	3,318	40	20	22	3,318	50	25	28	3,318
700	30	15	17	3,849	40	20	22	3,849	50	25	28	3,849
750	30	15	16	4,418	40	20	22	4,418	50	25	27	4,418
800	30	15	16	5,027	40	20	22	5,027	50	25	27	5,027
850	30	15 15	16	5,675	40	20	22	5,675	50	25	27	5,675
900 950	30 30	15 15	16 16	6,362 7,088	40 40	20 20	21 21	6,362 7,088	50 50	25 25	27 27	6,362 7,088
1000	30	15	16	7,854	40	20	21	7,854	50	25	26	7,854
1050	30	15	16	8,659	40	20	21	8,659	50	25	26	8,659
1100	30	15	16	9,503	40	20	21	9,503	50	25	26	9,503
1150	30	15	16	10,387	40	20	21	10,387	50	25	26	10,387
1200	30	15	15	11,310	40	20	21	11,310	50	25	26	11,310
1250	30	15	15	12,272	40	20	21	12,272	50	25	26	12,272
1300 1350	30 30	15 15	15 15	13,273 14,314	40 40	20 20	20 20	13,273 14,314	50 50	25 25	26 25	13,273 14,314
1400	30	15	15	15,394	40	20	20	15,394	50	25	25	15,394
1450	30	15	15	16,513	40	20	20	16,513	50	25	25	16,513
1500	30	15	15	17,672	40	20	20	17,672	50	25	25	17,672
1600	30	15	15	20,106	40	20	20	20,106	50	25	25	20,106
1650	30	15	15	21,383	40	20	20	21,383	50	25	25	21,383
1700	30	15	15	22,698	40	20	20	22,698	50	25	25	22,698
1800 1900	30 30	15 15	15 15	25,447 28,353	40 40	20 20	20 19	25,447 28,353	50 50	25 25	24 24	25,447 28,353
1950	30	15	15	29,865	40	20	19	29,865	50	25	24	29,865
2000	30	15	15	31,416	40	20	19	31,416	50	25	24	31,416
2100	30	15	14	34,636	40	20	19	34,636	50	25	24	34,636
2200	30	15	14	38,013	40	20	19	38,013	50	25	24	38,013
2250	30	15	14	39,761	40	20	19	39,761	50	25	24	39,761
2300 2400	30 30	15 15	14 14	41,548	40 40	20 20	19	41,548	50	25	24 24	41,548
2500	30	15 15	14	45,239 49,087	40	20	19 19	45,239 49,087	50 50	25 25	24	45,239 49,087
2550	30	15	14	51,071	40	20	19	51,071	50	25	23	51,071
2600	30	15	14	53,093	40	20	19	53,093	50	25	23	53,093
2700	30	15	14	57,256	40	20	19	57,256	50	25	23	57,256
2800	30	15	14	61,575	40	20	19	61,575	50	25	23	61,575
2850	30	15	14	63,794	40	20	18	63,794	50	25	23	63,794
2900	30	15 15	14	66,052 70,686	40	20	18	66,052	50	25	23	66,052
3000 3100	30 30	15 15	14 14	70,686 75,477	40 40	20 20	18 18	70,686 75,477	50 50	25 25	23 23	70,686 75,477
3150	30	15	14	77,931	40	20	18	77,931	50	25	23	77,931
3200	30	15	14	80,425	40	20	18	80,425	50	25	23	80,425
3300	30	15	14	85,530	40	20	18	85,530	50	25	23	85,530
3400	30	15	14	90,792	40	20	18	90,792	50	25	23	90,792
3450	30	15	14	93,482	40	20	18	93,482	50	25	23	93,482
3600 3800	30 30	15 15	13 13	101,788 113,412	40 40	20 20	18 18	101,788 113,412	50 50	25 25	22 22	101,788 113,412
4000	30	15	13	125,664	40	20	18	125,664	50	25	22	125,664
7000	30		, ,	123,004	70	20	10	123,004	30	23	22	123,004

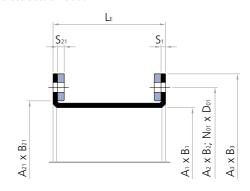
Recommended sizes Further possible sizes In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN6. In case of deviating flange dimensions, please contact us.


U501A > with vacuum ring


			Ins	stallatio	n lengt	h (L _E) at	desig	n pressu	ıre			
	up 1	to 6 bar L	_E = 250	mm	up 1	to 6 bar L	_E = 300	mm	up 1	to 6 bar L	_E = 350	mm
					high	er pressur	es on rec	quest				
	ı	Movement	t	Α	ľ	Movement	1	Α		Movemen	t	Α
Ø	+\}-				+\}-				₩			
mm	mm	mm	±mm	cm ²	mm	mm	±mm	cm ²	mm	mm	±mm	cm ²
300	30	15	18	707	40	20	25	707	50	25	31	707
350	30	15	18	962	40	20	24	962	50	25	30	962
400	30	15	18	1,257	40	20	24	1,257	50	25	30	1,257
450	30	15	17	1,590	40	20	23	1,590	50	25	29	1,590
500 550	30 30	15 15	17 17	1,964 2,376	40 40	20 20	23 23	1,964 2,376	50 50	25 25	29 28	1,964 2,376
600	30	15	17	2,827	40	20	22	2,827	50	25	28	2,827
650	30	15	17	3,318	40	20	22	3,318	50	25	28	3,318
700	30	15	17	3,849	40	20	22	3,849	50	25	28	3,849
750	30	15	16	4,418	40	20	22	4,418	50	25	27	4,418
800	30	15	16	5,027	40	20	22	5,027	50	25	27	5,027
850 900	30 30	15 15	16 16	5,675 6,362	40 40	20 20	22 21	5,675 6,362	50 50	25 25	27 27	5,675 6,362
950	30	15	16	7,088	40	20	21	7,088	50	25	27	7,088
1000	30	15	16	7,854	40	20	21	7,854	50	25	26	7,854
1050	30	15	16	8,659	40	20	21	8,659	50	25	26	8,659
1100	30	15	16	9,503	40	20	21	9,503	50	25	26	9,503
1150	30	15	16	10,387	40	20	21	10,387	50	25	26	10,387
1200	30	15	15	11,310	40	20	21	11,310	50	25	26	11,310
1250 1300	30 30	15 15	15 15	12,272 13,273	40 40	20 20	21 20	12,272 13,273	50 50	25 25	26 26	12,272 13,273
1350	30	15	15	14,314	40	20	20	14,314	50	25	25	14,314
1400	30	15	15	15,394	40	20	20	15,394	50	25	25	15,394
1450	30	15	15	16,513	40	20	20	16,513	50	25	25	16,513
1500	30	15	15	17,672	40	20	20	17,672	50	25	25	17,672
1600	30	15	15	20,106	40	20	20	20,106	50	25	25	20,106
1650 1700	30 30	15 15	15 15	21,383 22,698	40 40	20 20	20 20	21,383 22,698	50 50	25 25	25 25	21,383 22,698
1800	30	15	15	25,447	40	20	20	25,447	50	25	23	25,447
1900	30	15	15	28,353	40	20	19	28,353	50	25	24	28,353
1950	30	15	15	29,865	40	20	19	29,865	50	25	24	29,865
2000	30	15	15	31,416	40	20	19	31,416	50	25	24	31,416
2100	30	15	14	34,636	40	20	19	34,636	50	25	24	34,636
2200 2250	30 30	15 15	14 14	38,013 39,761	40 40	20 20	19 19	38,013 39,761	50 50	25 25	24 24	38,013 39,761
2300	30	15	14	41,548	40	20	19	41,548	50	25	24	41,548
2400	30	15	14	45,239	40	20	19	45,239	50	25	24	45,239
2500	30	15	14	49,087	40	20	19	49,087	50	25	24	49,087
2550	30	15	14	51,071	40	20	19	51,071	50	25	23	51,071
2600	30	15	14	53,093	40	20	19	53,093	50	25	23	53,093
2700 2800	30 30	15 15	14 14	57,256 61,575	40 40	20 20	19 19	57,256 61,575	50 50	25 25	23 23	57,256 61,575
2850	30	15	14	63,794	40	20	18	63,794	50	25	23	63,794
2900	30	15	14	66,052	40	20	18	66,052	50	25	23	66,052
3000	30	15	14	70,686	40	20	18	70,686	50	25	23	70,686
3100	30	15	14	75,477	40	20	18	75,477	50	25	23	75,477
3150	30	15	14	77,931	40	20	18	77,931	50	25	23	77,931
3200	30	15 15	14	80,425	40	20	18	80,425 85,530	50 50	25	23	80,425
3300 3400	30 30	15 15	14 14	85,530 90,792	40 40	20 20	18 18	90,792	50 50	25 25	23 23	85,530 90,792
3450	30	15	14	93,482	40	20	18	93,482	50	25	23	93,482
3600	30	15	13	101,788	40	20	18	101,788	50	25	22	101,788
3800	30	15	13	113,412	40	20	18	113,412	50	25	22	113,412
4000	30	15	13	125,664	40	20	18	125,664	50	25	22	125,664

Recommended sizes Further possible sizes In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.


U900A Custom length x width

> Type U900A

Cross section U900A

Rectangular universal expansion joint without arch

Design: Streamlined, cylindrical rubber bellows with full faced

> rubber flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and singleor multi-part backing flanges. Reducers, offset and oval styles, or rounded corners available. In compliance with FSA

Technical Handbook and ASTM F1123 - 87.

Dimensions: Individual length x width

Length: Custom length

Up to 2,5 bar depending on dimensions and length Pressure:

Vacuum stability on request

Movement: For small axial and lateral movements

Application:

Power plants, plant construction, food processing, wastewater treatment plants, industrial plants, paper industry e.g. to disconnect apparatus, for compressors

Request assembly instructions at: www.ditec-adam.de/

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part backing flanges with clearance holes

Flange norms: According to customer specification

Materials: Carbon steel, stainless steel or aluminium

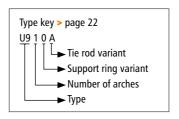
Coating: Primed, hot-dip galvanised, special paint

Accessories

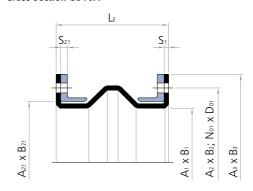
Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)


Flow liners: Cylindrical flow liner

Conical flow liner


Telescoping flow liner (> page 57)

> Type U910A

Cross section U910A

Rectangular universal expansion joint with one or more arches

Design: Streamlined, single or multiple arch rubber bellows with

full faced rubber flanges, designed to compensate all-directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single-part backing flanges with support collar. Reducers, offset and oval styles, or rounded corners available. In compliance with FSA Technical Handbook and

ASTM F1123 - 87.

Dimensions: Custom length x width

☑ up to 4,000 x 4,000 mm or 6,000 x 3,000 mm

Length: Custom length

Pressure: Up to 10 bar depending on dimensions and length

Vacuum stability on request

Movement: For large axial and lateral movements

Application:

Power plants, plant construction, food processing, wastewater treatment plants, industrial plants, paper industry e.g. to disconnect apparatus, for compressors

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part backing flanges with support collar and clearance holes

Flange norms: According to customer specification

Materials: Carbon steel, stainless steel or aluminium

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

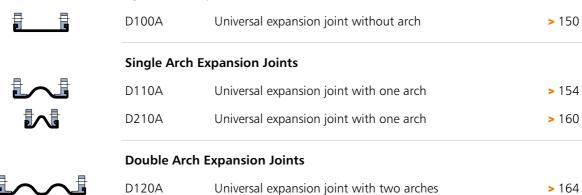
Telescoping flow liner (> page 57)

Filled arch:

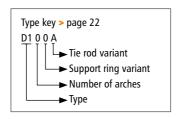
146 Universal expansion joints with full faced rubber flange

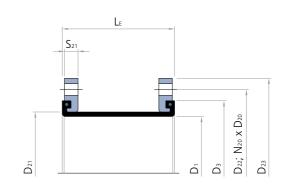
EPDM rubber bellow with angular offset for a coal mill work shop test pressure 15 bar to simulate explosion

Radiation resistant Silicone single arch rubber bellow with internal vacuum ring prepared for hydraulic testing installation on a high-pressure fan inside of a nuclear power plant


Triple arch FPM rubber bellow for decanter centrifuges

Universal expansion joints with swivel flange


Cylindrical Expansion Joints without Arch


D100A Ø 40 - 1,200 mm

> Type D100A

Cross section D100A

Universal expansion joint without arch

Design: Streamlined, cylindrical rubber bellows with self-sealing rubber

bulges, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges. Optional with embedded support rings. In compliance with PED 2014/68/EU, FSA Technical Handbook and

ASTM F1123 - 87.

Diameters: Ø 40 to 1,200 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 152)

Custom length on request

Pressure: Up to 10 bar depending on diameter and length

Vacuum stability on request

Movement: For small axial and lateral movements

→ ‡ (> page 152)

Application:
Plant construction,
sand/gravel extraction
industry, dredgers,
food processing e.g. as
suction/pressure hoses,
in conveying lines, on

pumps and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single-part, swivel, round backing flanges with clearance holes and groove

to accept the rubber bulges

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

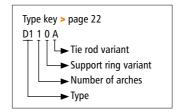
					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar L _E =	150 mm			up to 10	bar L E =	200 mm			up to 10	bar L E =	250 mm	
							higher pr	essures o	n request						
		Move	ment		Α			ment		۸		Move	ment		^
Ø	М	\sim	lo i	\sim		М	\sim	lo i	\sim		М	\sim	le i	\sim	A
×	*		\mathbb{R}	\		*		\mathcal{K}	₩ 		*		ΚĬ		
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
40	8	5	12	0	10	10	6	16	0	10	13	8	20	0	10
50	8	5	11	0	16	10	6	15	0	16	13	8	19	0	16
65	8	5	11	0	28	10	6	14	0	28	13	8	18	0	28
80	8	5	10	0	43	10	6	14	0	43	13	8	17	0	43
100	8	5	10	0	69	10	6	13	0	69	13	8	17	0	69
125	8	5	10	0	115	10	6	13	0	115	13	8	16	0	115
150	8	5	9	0	170	10	6	12	0	170	13	8	15	0	170
200	8	5	9	0	278	10	6	12	0	278	13	8	14	0	278
250	8	5	8	0	449	10	6	11	0	449	13	8	14	0	449
300	8	5	8	0	656	10	6	11	0	656	13	8	13	0	656
350	8	5	8	0	855	10	6	10	0	855	13	8	13	0	855
400	8	5	8	0	1,195	10	6	10	0	1,195	13	8	13	0	1,195
450	8	5	7	0	1,514	10	6	10	0	1,514	13	8	12	0	1,514
500	8	5	7	0	1,886	10	6	10	0	1,886	13	8	12	0	1,886
600	8	5	7	0	2,706	10	6	9	0	2,706	13	8	12	0	2,706
700	8	5	7	0	3,750	10	6	9	0	3,750	13	8	11	0	3,750
800	8	5	7	0	4,914	10	6	9	0	4,914	13	8	11	0	4,914
900 1000	8	5 5	6 6	0	6,193 7.667	10 10	6 6	9 8	0	6,193 7,667	13 13	8 8	11 10	0	6,193 7,667
1100	8	5	6	0	9,297	10	6	8	0	9,297	13	8	10	0	9,297
1200	8	5 5	6	0	11,085	10	6	8	0	11,085	13	8	10	0	11,085
1200	O	3	U	U	11,065	10	U	O	U	11,000	13	o	10	U	11,005

					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar L ₅ =	300 mm			up to 10	bar L ₅ =	350 mm			up to 10	bar L _E =	400 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Δ		Move	ment		_
Ø	M		١٠.	\sim		لما		ا ما	\sim	A L	لما		ŀ)	\sim	A
Ø	- []		Κď			- []		*			- []		₹ ∄		
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
40	15	9	24	0	10	18	11	28	0	10	20	12	32	0	10
50	15	9	23	0	16	18	11	27	0	16	20	12	30	0	16
65	15	9	22	0	28	18	11	25	0	28	20	12	29	0	28
80	15	9	21	0	43	18	11	24	0	43	20	12	28	0	43
100	15	9	20	0	69	18	11	23	0	69	20	12	27	0	69
125	15	9	19	0	115	18	11	22	0	115	20	12	25	0	115
150	15	9	18	0	170	18	11	21	0	170	20	12	24	0	170
200	15	9	17	0	278	18	11	20	0	278	20	12	23	0	278
250	15	9	17	0	449	18	11	19	0	449	20	12	22	0	449
300	15	9	16	0	656	18	11	19	0	656	20	12	21	0	656
350	15	9	15	0	855	18	11	18	0	855	20	12	21	0	855
400	15	9	15	0	1,195	18	11	18	0	1,195	20	12	20	0	1,195
450	15	9	15	0	1,514	18	11	17	0	1,514	20	12	20	0	1,514
500	15	9	14	0	1,886	18	11	17	0	1,886	20	12	19	0	1,886
600	15	9	14	0	2,706	18	11	16	0	2,706	20	12	19	0	2,706
700	15	9	13	0	3,750	18	11	16	0	3,750	20	12	18	0	3,750
800	15	9	13	0	4,914	18	11	15	0	4,914	20	12	18	0	4,914
900	15 15	9 9	13 13	0	6,193 7.667	18 18	11 11	15	0	6,193	20	12 12	17 17	0	6,193
1000 1100	15	9	13	0	7,667 9,297	18	11	15 14	0	7,667 9,297	20 20	12	16	0	7,667 9,297
1200	15	9	12	0	11,085	18	11	14	0	11,085	20	12	16	0	11,085
1200	13	9	12	U	11,085	10	11	14	U	11,085	20	12	10	U	11,085

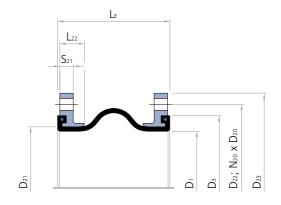
For larger movements see type D110A.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

Universal expansion joint, type D110A on the suction side of quenching water pumps in a waste incineration plant \varnothing 150 mm, 16 bar



Single arch swivel flange EPDM rubber expansion joint to compensate lateral movements of a GRP pipeline


D110A Ø 20 - 1,200 mm

- > Type D110A without vacuum ring
- > Type D111A with internal vacuum ring
- > Type D112A with embedded vacuum ring

Cross section D110A

Universal expansion joint with one arch

Design: Streamlined, single wide arch rubber bellows with seal-sealing

rubber bulges, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook

and ASTM F1123 - 87.

Diameters: Ø 20 to 1,200 mm, custom diameters possible

Length: Standard $L_E = 130$ to 350 mm (> page 157–159)

Custom length on request

Pressure: Up to 25 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Movement: For axial, lateral and angular movements

Spring rate: Axial and lateral spring rates (> page 296)

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e. g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/

Standard rubber bellows

Elastomer	Fabric	Marking	°C	Application
EPDM / EPDM	PEEK		-40 +130	Heating systems, cooling, hot air
IIR / EPDM	Polyamid		-40 +100	Drinking water, seawater, weak acids and alkalis
EPDM/EPDM	Polyamid		-30 +90	Seawater, weak acids and alkalis
NBR / CR	Polyamid		-20 +90	Oils, fuels, gases
NBRweiß / CR	Polyamid		-20 +90	Fat containing food, weather resistant
CSM / CSM	Polyamid		-20 +100	Chemicals, aggresive chemical wastewater, weather resistant
NBR / CR	Polyamid		-20 +90	Oils, fuels, gases, LPG, blast furnace gas, lubricants
IIR / EPDM	Polyamid		-40 +90	Seawater, weak acids and alkalis
CR / CR	Polyamid	-	-25 +90	Cold- and hot water, seawater, wastewater with oleaginous corrosion protection
NBR / CR	Stahl		-20 +90	Oils, fuels, gases, fuel ethanol blends
NBR-LT / CR	Polyamid	LT	-40 +90	Oils, fuels, gases, LPG, for tanker and filling stations
HNBR / CR	Stahl		-35 +100	Oils, fuels, gases, LPG, high Temperature
BR	Polyamid		-50 +70	Sludge, dust or powder, liquids with solids, emulsions

Non-standard rubber bellows

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

156 Universal expansion joints with swivel flanges

Backing flanges

Design: Single-part, swivel, round backing flanges with support collar, clearance holes

and groove to accept the rubber bulges

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:

(> page

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
D110A		None	Depending on the diameter up to 25 bar, vacuum stability on request	> page 157
D111A		Vacuum spirals up to \varnothing 250 mm, vacuum ring starting at \varnothing 300 mm Medium contact, inside the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 158
D112A		No medium contact, embedded in the arch starting at \varnothing 100 mm	Depending on the diameter up to 16 bar, for vacuum up to 0.05 bar absolute	> page 159
Material	5			
Stainless	steel	Carbon steel, eml	pedded	

					Install	essure									
		up to 10	bar L ₅ =	130 mm			up to 10	bar L ₅ =	150 mm			up to 10	bar L ₅ =	175 mm	
									n request						
		Mayra	ment				Move		request			Mayıa	ement		
		IVIOVE	ment	. ,	Α.		IVIOVE	ment		. А .		IVIOVE	ment	. ,	Α.
Ø	- ^-		ĮΫ	\rightleftharpoons		- M-		ĮΉ	\Rightarrow	M	- M-		ĮΥ	\Rightarrow	M
	\sim	\sim	174	M		M	\sim	174	\sim		\sim	1 ~ 1	174	M	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
20	30	30	30	30.0	17										
25	30	30	30	30.0	17										
32	30	30	30	30.0	17										
40	30	30	30	35.0	18										
50	30	30	30	30.0	32										
65	30	30	30	30.0	53	20	20	20	20.0	05					
80	30	30	30	30.0	85	30	30	30	30.0	85					
100 125	30 30	30 30	30 30	20.0 20.0	128 187	30 30	30 30	30 30	20.0 20.0	128 187					
150	30	30	30	20.0	259	30	30	30	20.0	259					
200	30	30	30	12.0	410	30	30	30	20.0	259	30	30	30	12.0	410
250	30	30	30	12.0	596						30	30	30	12.0	596
300	30	30	30	12.0	822						31	10	17	3.8	903
350	30	50	30	12.0	022						31	10	17	3.3	1,134
400											31	10	17	2.9	1,521
450											31	10	17	2.5	1,878
500											31	10	17	2.3	2,290
600											31	10	16	1.9	3,187
700											31	10	16	1.6	4,312
800											31	10	16	1.4	5,555
900											31	10	16	1.3	6,910
1000											31	10	16	1.1	8,462
1100											31	10	15	1.0	10,171
1200											31	10	15	1.0	12,037

					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar L ∈ =	200 mm			up to 10	bar L _E =	250 mm			up to 10	bar L ∈ =	275 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		А		Move	ment		Α
Ø	***	\(\frac{1}{2}\)		₩		***			\times		***	₹		₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	40	20	26	11.3	564	44	20	29	11.3	573	44	20	29	11.3	573
250	40	20	26	9.1	799	44	20	28	9.1	809	44	20	28	9.1	809
300	30	30	30	12.0	822	44	20	27	7.6	1,081	44	20	27	7.6	1,081
350	50	30	30	8.0	1,176	44	20	27	6.5	1,333	44	20	27	6.5	1,333
400	50	30	30	8.0	1,547	44	20	27	5.7	1,750	44	20	27	5.7	1,750
450	50	30	30	8.0	2,042	50	30	30	8.0	2,042	44	20	26	5.1	2,132
500	50	30	30	8.0	2,279	40	20	30	6.0	2,279	44	20	26	4.6	2,570
600	50	30	30	8.0	3,115	40	20	30	6.0	3,115	44	20	26	3.8	3,515
700	40	20	24	3.3	4,669	50	30	30	8.0	4,342	50	30	30	8.0	4,342
800	40	20	23	2.9	5,958	50	30	30	6.0	5,274	44	20	25	2.9	5,986
900	40	20	23	2.5	7,359	44	20	25	2.5	7,390	44	20	25	2.5	7,390
1000	40	20	23	2.3	8,958	44	20	25	2.3	8,992	44	20	25	2.3	8,992
1100	40	20	23	2.1	10,715	44	20	24	2.1	10,751	44	20	24	2.1	10,751
1200	40	20	22	1.9	12,628	44	20	24	1.9	12,668	44	20	24	1.9	12,668

		Ins	tallatio	n lengt	h (L _E) at	desigr	pressu	re						
		up to 10	bar L ∈ =	300 mm			up to 10	bar $L_E =$	350 mm					
				high	er pressui	ressures on request								
		Move	ment		Α		Move		Α					
Ø	***	₹		\times		***			\times					
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²				
200	53	31	37	17.2	707	69	43	49	23.3	897				
250	53	31	36	19.0	968	69	43	48	19.0	1,188				
300	53	31	36	16.0	1,263	69	43	48	16.0	1,514				
350	53	31	35	13.8	1,534	69	69 43 47 13.8							
400	53	31	35	12.1	1,979	69	43	46	12.1	2,290				
450	53	31	34	10.8	2,384	69	43	46	10.8	2,725				
500	53	31	34	9.8	2,846	69	43	45	9.8	3,217				
600	53	31	33	8.2	3,837	69	43	45	8.2	4,266				
700	53	31	33	7.0	5,064	69	43	44	7.0	5,555				
800	53	31	33	6.1	6,404	69	43	43	6.1	6,955				
900	50	30	30	5.0	7,379	69	43	43	5.5	8,462				
1000	50	30	30	5.0	8,894	69	43	43	4.9	10,171				
1100	53	31	32	4.5	11,310	69	43	42	4.5	12,037				
1200	53	31	31	4.1	13,273	69	43	42	4.1	14,061				

Standard sizes
Non-standard sizes

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type D120A and D123A.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

	Installation length (L_E) at design pressureup to 10 bar L_E = 130 mmup to 10 bar L_E = 150 mmup to 10 bar L_E = 175 m														
		up to 10	bar L ₅ =	130 mm			up to 10	bar L ₅ =	150 mm			up to 10	bar L ₅ =	175 mm	
							_		n request						
		Move	ment	_			Move					Move	mont	_	
~	Lal	1 - 1		\ - /	A	Lal	1 - 1	10.	\ - /	A	Lal	1 - 1		\ - /	A
Ø	- 1'4-			 		- 1'4	[ĮΥ	 	MM	- 14		Ε̈́Υ	\ \ \ \ \	MM
	\sim	\sim		\sim		\sim	\sim	174	\sim	لمما	\sim	1 - 1	174	\sim	لمرا
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
20	30	10	30	30.0	17										
25	30	10	30	30.0	17										
32 40	30 30	10 10	30 30	30.0 35.0	17										
40 50	30	10	30	30.0	18 32										
65	30	10	30	30.0	53										
80	30	10	30	30.0	85	30	10	30	30.0	85					
100	30	10	30	20.0	128	30	10	30	20.0	128					
125	30	10	30	20.0	187	30	10	30	20.0	187					
150	30	10	30	20.0	259	30	10	30	20.0	259					
200	30	10	30	12.0	410						30	10	30	12	410
250	30	10	30	12.0	596						30	10	30	12	596
300	30	10	30	12.0	822						31	3	17	3.8	903
350											31	3	17	3.3	1,134
400											31	3	17	2.9	1,521
450											31	3	17	2.5	1,878
500											31	3	17	2.3	2,290
600 700											31 31	3 3	16 16	1.9	3,187
800											31	3	16	1.6 1.4	4,312 5,555
900											31	3	16	1.4	6,910
1000											31	3	16	1.1	8,462
1100											31	3	15	1	10,171
1200											31	3	15	1	12,037

	Installation length ($L_{\scriptscriptstyle E}$) at design pressure														
		up to 10	bar L _E =	200 mm			up to 10	bar L ∈ =	250 mm			up to 10	bar L ∈ =	275 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		А		Move	ment		Α
Ø	**		\bigcirc	\times		***			\rightleftharpoons		***			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	40	7	26	11.3	564	44	7	29	11.3	573	44	7	29	11.3	573
250	40	7	26	9.1	799	44	7	28	9.1	809	44	7	28	9.1	809
300	30	10	30	12	822	44	7	27	7.6	1,081	44	7	27	7.6	1,081
350	50	10	30	8	1,176	44	7	27	6.5	1,333	44	7	27	6.5	1,333
400	50	10	30	8	1,547	44	7	27	5.7	1,750	44	7	27	5.7	1,750
450	50	30	30	8	2,042	50	10	30	8	2,042	44	7	26	5.1	2,132
500	50	10	30	8	2,279	40	7	30	6	2,279	44	7	26	4.6	2,570
600	50	10	30	8	3,115	40	7	30	6	3,115	44	7	26	3.8	3,515
700	40	7	24	3.3	4,669	50	10	30	8	4,342	50	10	30	8	4,342
800	40	7	23	2.9	5,958	50	10	30	6	5,274	44	7	25	2.9	5,986
900	40	7	23	2.5	7,359	44	7	25	2.5	7,390	44	7	25	2.5	7,390
1000	40	7	23	2.3	8,958	44	7	25	2.3	8,992	44	7	25	2.3	8,992
1100	40	7	23	2.1	10,715	44	7	24	2.1	10,751	44	7	24	2.1	10,751
1200	40	7	22	1.9	12,628	44	7	24	1.9	12,668	44	7	24	1.9	12,668

	Installation length (L _F) at design pressure												
		Ins	tallatio	n lengt	h (L_E) at	desigr	ı pressu	re					
		up to 10	bar $L_E =$	300 mm			up to 10	bar $L_E =$	350 mm				
				high	er pressur	es on req	uest						
		Move	ment		Α		Move	ment		Α			
Ø	***	₹		\times		**	₹		\rightleftharpoons				
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²			
200	53	10	37	17.2	707	69	14	49	23.3	897			
250	53	10	36	13.9	968	69	14	48	19	1,188			
300	53	10	36	11.7	1,263	69	14	48	16	1,514			
350	53	10	35	10	1,534	69	14	47	13.8	1,810			
400	53	10	35	8.8	1,979	69	12.1	2,290					
450	53	10	34	7.8	2,384	69	14	46	10.8	2,725			
500	53	10	34	7.1	2,846	69	14	45	9.8	3,217			
600	53	10	33	5.9	3,837	69	14	45	8.2	4,266			
700	53	10	33	5.1	5,064	69	14	44	7	5,555			
800	53	10	33	4.4	6,404	69	14	43	6.1	6,955			
900	50	10	30	5	7,379	69	14	43	5.5	8,462			
1000	50	10	30	5	8,894	69	14	43	4.9	10,171			
1100	53	10	32	3.2	11,310	69	14	42	4.5	12,037			
1200	53	10	31	3	13,273	69	14	42	4.1	14,061			

Standard sizes
Non-standard sizes

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type D121A or D124A.

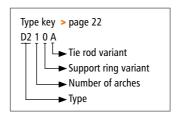
The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

					Instal	lation le	ngth (L	_E) at de	sign pre	essure					
		up to 10	bar L _E =	130 mm			up to 10	bar L _E =	150 mm			up to 10	bar L _E =	175 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	М	\sim	l/si	\sim	Ŵ	М	\sim	l/si	\sim	Ŵ	М	\sim	l/si	\sim	Ŵ
~	*		K	₩ 7	\mathbb{H}			K	\Box	\mathbb{W}	*		K	₩ ₩	\mathbb{H}
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
20															
25															
32															
40 50															
65															
80															
100															
125															
150 200											20	2	17	4	401
250											20	2	16	3.2	603
300											20	2	16	2.7	840
350											20	2	16	2.3	1,064
400											20	2	16	2	1,439
450											20	2	16	1.8	1,787
500 600											20 20	2	15 15	1.6 1.3	2,190 3,068
700											20	2	15	1.1	4,174
800											20	2	15	1	5,398
900											20	2	15	0.9	6,735
1000											20	2	15	0.8	8,268
1100											20	2	14	0.7	9,958
1200											20	2	14	0.7	11,805

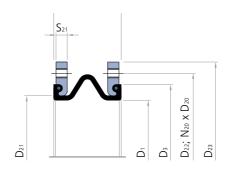
	Installation length (L _E) at design pressure														
		up to 10	bar $L_E =$	200 mm			up to 10	bar L _E =	250 mm			up to 10	bar L E =	275 mm	
							higher pr	essures o	n request						
		Move	ment		Α	A Movement				Α		Move	ment		Α
Ø						***			\rightleftharpoons		***			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	26	6	25	10.2	515	29	6	28	10.2	531	29	6	28	10.2	531
250	26	6	25	8.2	740	29	6	27	8.2	760	29	6	27	8.2	760
300	26	6	24	6.8	1,001	29	6	27	6.8	1,024	29	6	27	6.8	1,024
350	26	6	24	5.9	1,244	29	6	26	5.9	1,269	29	6	26	5.9	1,269
400	26	6	24	5.1	1,647	29	6	26	5.1	1,676	29	6	26	5.1	1,676
450	26	6	23	4.6	2,019	29	6	26	4.6	2,051	29	6	26	4.6	2,051
500	26	6	23	4.1	2,445	29	6	25	4.1	2,481	29	6	25	4.1	2,481
600	26	6	23	3.4	3,370	29	6	25	3.4	3,411	29	6	25	3.4	3,411
700	26	6	23	2.9	4,525	29	6	25	2.9	4,572	29	6	25	2.9	4,572
800	26	6	22	2.6	5,795	29	6	24	2.6	5,849	29	6	24	2.6	5,849
900	26	· · · · · · · · · · · · · · · · · · ·					6	24	2.3	7,238	29	6	24	2.3	7,238
1000	26	26 6 22 2.1 8,75					6	24	2.1	8,825	29	6	24	2.1	8,825
1100	26	6	22	1.9	10,496	29	6	24	1.9	10,568	29	6	24	1.9	10,568
1200	26	6	21	1.7	12,390	29	6	23	1.7	12,469	29	6	23	1.7	12,469

	Installation length (L_E) at design pressure up to 10 bar L_E = 300 mm up to 10 bar L_E = 350 mm													
		up to 10	bar $L_E =$	300 mm			up to 10	bar $L_E =$	350 mm					
				high	er pressui	pressures on request								
		Move	ment		Α	Movement								
Ø	***			\Longrightarrow		***			\rightleftharpoons	Â				
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²				
200	35	9	36	16.2	661	46	13	48	21.3	804				
250	35	9	35	13.1	913	46	13	47	17.3	1,081				
300	35	9	35	10.9	1,201	46	13	46	14.6	1,392				
350	35	9	34	9.4	1,466	46	13	45	12.6	1,676				
400	35	9	34	8.3	1,901	46	13	45	11	2,140				
450	35	9	33	7.3	2,299	46	13	44	9.8	2,561				
500	35	9	33	6.6	2,753	46	13	44	8.9	3,039				
600	35	9	33	5.5	3,728	46	13	43	7.4	4,060				
700	35	9	32	4.7	4,939	46	13	43	6.4	5,320				
800	35	9	32	4.1	6,263	46	13	42	5.6	6,691				
900	35	9	31	3.7	7,698	46	13	42	5	8,171				
1000	35	9	31	3.3	9,331	46	13	41	4.5	9,852				
1100	35	9	31	3	11,122	46	13	41	4.1	11,690				
1200	35	9	31	2.8	13,070	46	13	41	3.7	13,685				

Standard sizes
Non-standard sizes


In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type D122A or D125A.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.


D210A Ø 32 - 500 mm

- > Type D210A without vacuum ring
- > Type D211A with internal vacuum ring

Cross section D210A

Universal expansion joint with one arch

Design: Streamlined, single arch rubber bellows with self-sealing rubber

bulges, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges with threaded holes. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical

Handbook and ASTM F1123 - 87.

Diameters: \emptyset 32 to 500 mm

Length: $L_E = 100 \text{ or } 110 \text{ mm (> page } 162-163)$

Pressure: Up to 25 bar depending on diameter

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Movement: For large axial, lateral and angular movements

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM / EPDM	PEEK		-40 +130	Heating systems acc. 4809, warm- and hot water
IIR / EPDM	Polyamid		-40 +100	Drinking water, seawater, acids, dilute chlorine compounds
NBR / CR	Polyamid		-20 +90	Oil, gases, lubricants, natural gas
NBRweiß / CR	Polyamid		-20 +90	Oily and fatty food (in complinance with KTW and FDA)
CSM / CSM	Polyamid		-20 +100	Chemicals, corrosive chemical waste, air compressors with oil content
IIR / EPDM	Polyamid		-40 +90	Cold-and warm water, sea water, cooling water, weak acids, alcohol

Backing flanges

Design: Single-part, swivel, round backing flanges with threaded holes

and groove to accept the rubber bulges

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Galvanised, yellow neutralised

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
D210A		None	Depending on the diameter up to 25 bar, vacuum stability on request	> page 162
D211A		Vacuum spiral / ring, medium contact, inside the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 163
Materials				
Stainless	steel			

D210Awithout vacuum support ring

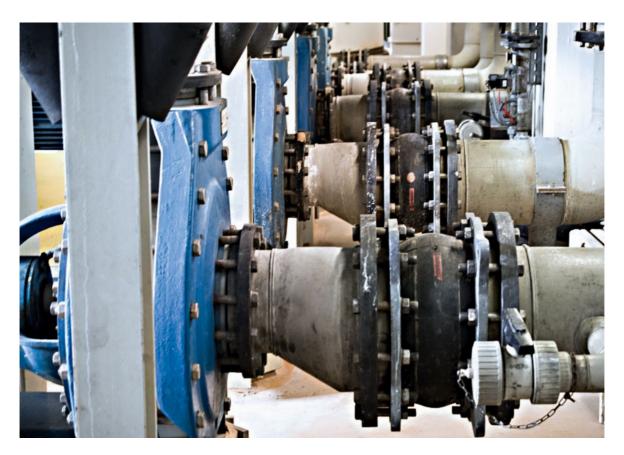
		Ins	tallatio	n lengtl	h (L _E) at	design	pressu	re					
		up to 10	bar L _E =	100 mm			up to 10	bar L ∈ =	110 mm				
				high	er pressu	ures on request							
		Move	ment		Α	Movement A							
Ø	***			₩		***			\times				
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²			
32	30	20	30	7.0	18								
40	30	20	30	7.0	18								
50	30	20	30	7.0	35								
65	30	20	30	7.0	56								
80	30	20	30	7.0	87								
100	30	20	30	7.0	130								
125	30	20	30	7.0	190								
150	30	20	30	7.0	263								
200	30	20	30	7.0	416								
250	30	20	30	7.0	607								
300	30	20	30	7.0	830								
350	30	20	30	7.0	1,100								
400						30	20	30	7.0	1,385			
500						30	20	30	7.0	2,091			

Standard sizes

In the event of axial extension and simultaneous lateral displacement (due to installation gap tolerance) the above movements are reduced (> page 29).

Angular movement only possible for 10 mm reduced installation length (90 / 100).

Universal expansion joint, type D110A in a plastic pipe of a paper plant \varnothing 150 mm, design pressure 6 bar

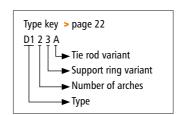


		Ins	tallatio	n lengtl	h (L _E) at	design	pressu	re				
		up to 10	bar L _E =	100 mm			up to 10	bar $L_E =$	110 mm			
				high	er pressu	ires on request						
		Move	ment		Α	Movement A						
Ø	★			₩		★			₩			
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²		
32	30	5	20	4.0	18							
40	30	5	20	4.0	18							
50	30	5	20	4.0	35							
65	30	5	20	4.0	56							
80	30	5	20	4.0	87							
100	30	5	20	4.0	130							
125	30	5	20	4.0	190							
150	30	5	20	4.0	263							
200	30	5	20	4.0	416							
250	30	5	20	4.0	607							
300	30	5	20	4.0	830							
350	30	5	20	4.0	1,100							
400						30	5	20	4.0	1,385		
500						30	5	20	4.0	2,091		

Standard sizes

In the event of axial extension and simultaneous lateral displacement (due to installation gap tolerance) the above movements are reduced (> page 29).

Angular movement only possible for 10 mm reduced installation length (90 / 100).



Expansion joints with swivel flanges, type D110A pumping header installation Ø 300 mm, operating pressure 10 bar

D120A Ø 100 - 1,200 mm

- Type D120A without vacuum rings
- > Type D121A with internal vacuum rings
- > Type D122A with embedded vacuum rings
- > Type D123A without vacuum rings, with external support ring
- > Type D124A with internal vacuum rings, with external support ring
- > Type D125A with embedded vacuum rings, with external support ring

Universal expansion joint with two arches

Design: Streamlined, double wide arch rubber bellows with self-sealing

rubber bulges, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges. Optional with vacuum rings and/or external support ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Diameters: \varnothing 100 to 1,200 mm, custom diameters possible **Length:** Standard $L_E = 350$ to 600 mm (> page 167–169)

Custom length on request

Pressure: Up to 10 bar depending on diameter and length

Vacuum not allowed without vacuum rings, with vacuum rings up

to 0.05 bar absolute

Movement: For very large axial, lateral and angular movements

+ t t page 167–169)

Spring rate: To calculate the axial and lateral spring rate for double arch joints,

divide our single arch values of type D110A by the number of

arches (> page 296)

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single-part, swivel, round backing flanges with support collar, clearance holes

and groove to accept the rubber bulges

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

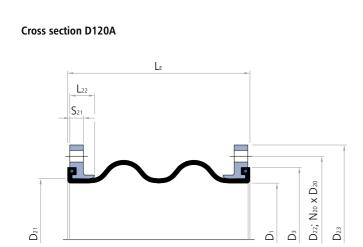
Protective covers: Ground protective shield

Protective shield or cover

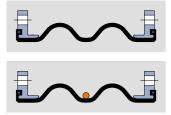
Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner


Telescoping flow liner (> page 57)

Filled arch:



Support rings

TYPE	Support rings		Vacuum ring	Support ring	Pressure	Movement
D120A			None	None	Low pressure, vacuum stability on request	> page 167
D121A			Medium contact, inside the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 168
D122A			No medium contact, embedded in the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 169
D123A			None	External between the arches	Depending on the diameter up to 10 bar, slight vacuum	> page 167
D124A			Medium contact, inside the arches	External between the arches	Depending on the diameter up to 10 bar, for vacuum up to 0.05 bar absolute	> page 168
D125A			No medium contact, embedded in the arches	External between the arches	Depending on the diameter up to 10 bar, for vacuum up to 0.05 bar absolute	> page 169
Material	s					
Stainless	steel	Carbon steel,	rubberised	Carbo	n steel, embedded	

D120A

> without vacuum rings

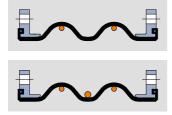
D123A

> without vacuum rings, with external support ring

	Installation length $(L_{\scriptscriptstyle E})$ at design pressure														
		up to 10	bar L ∈ =	350 mm			up to 10	bar L ∈ =	400 mm			up to 10	bar L ∈ =	450 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α	Movement				Α
Ø	***			\times		***			₩		***			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	62	20	36	11.3	445	80	40	53	21.8	564	88	41	57	22.3	573
250	62	20	35	9.1	656	80	40	52	17.7	799	88	41	56	18.2	809
300	62	20	35	7.6	903	80	40	51	14.9	1,069	88	41	55	15.3	1,081
350	62	20	34	6.5	1,134	80	40	50	12.9	1,320	88	41	54	13.2	1,333
400	62	20	34	5.7	1,521	80	40	50	11.3	1,735	88	41	54	11.6	1,750
450	62	20	33	5.1	1,878	80	40	49	10.1	2,116	88	41	53	10.3	2,132
500	62	20	33	4.6	2,290	80	40	49	9.1	2,552	88	41	52	9.3	2,570
600	62	20	33	3.8	3,187	80	40	48	7.6	3,494	88	41	52	7.8	3,515
700	62	20	32	3.3	4,312	80	40	47	6.5	4,669	88	41	51	6.7	4,693
800	62	20	32	2.9	5,555	80	40	47	5.7	5,958	88	41	50	5.9	5,986
900	62	20	31	2.5	6,910	80	40	46	5.1	7,359	88	41	50	5.2	7,390
1000	62	20	31	2.3	8,462	80	40	46	4.6	8,958	88	41	49	4.7	8,992
1100	62	20	31	2.1	10,171	80	40	45	4.2	10,715	88	41	49	4.3	10,751
1200	62	20	31	1.9	12,037	80	40	45	3.8	12,628	88	41	48	3.9	12,668

					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar $L_E =$	500 mm			up to 10	bar $L_E =$	550 mm			up to 10	bar $L_E =$	600 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ement		Α
Ø	***			\times		***			\times		***			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	106	61	74	31.4	707	124	82	91	39.4	855	138	85	99	40.4	897
250	106	61	72	26.0	968	124	82	89	33.3	1,140	138	85	97	34.2	1,188
300	106	61	71	22.1	1,263	124	82	88	28.7	1,459	138	85	95	29.5	1,514
350	106	61	70	19.2	1,534	124	82	86	25.1	1,750	138	85	94	25.9	1,810
400	106	61	69	17.0	1,979	124	82	85	22.3	2,223	138	85	93	23.0	2,290
450	106	61	69	15.2	2,384	124	82	84	20.0	2,651	138	85	92	20.7	2,725
500	106	61	68	13.7	2,846	124	82	84	18.2	3,137	138	85	91	18.8	3,217
600	106	61	67	11.5	3,837	124	82	82	15.3	4,174	138	85	89	15.8	4,266
700	106	61	66	9.9	5,064	124	82	81	13.2	5,450	138	85	88	13.7	5,555
800	106	61	65	8.7	6,404	124	82	80	11.6	6,837	138	85	87	12.0	6,955
900	106	61	64	7.7	7,854	124	82	79	10.3	8,332	138	85	86	10.7	8,462
1000	106	61	64	7.0	9,503	124	82	79	9.3	10,029	138	85	85	9.6	10,171
1100	106	61	63	6.3	11,310	124	82	78	8.5	11,882	138	85	84	8.8	12,037
1200	106	61	63	5.8	13,273	124	82	77	7.8	13,893	138	85	84	8.1	14,061

Recommended sizes Further possible sizes Angular movement only possible with guided external support ring.

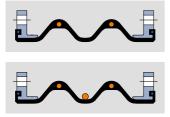

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

D121A

> with internal vacuum rings

D124A


> with internal vacuum rings, with external support ring

					Install	ation le	ngth (L	at de	sign pre	ssure					
		up to 10	bar L ∈ =	350 mm			up to 10	bar L ∈ =	400 mm			up to 10	bar L ∈ =	450 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		А		Move	ment		Α
Ø	**			\times		***	₹		₩		***			₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	62	7	36	11.3	445	80	13	53	21.8	564	88	13	57	22.3	573
250	62	7	35	9.1	656	80	13	52	17.7	799	88	13	56	18.2	809
300	62	7	35	7.6	903	80	13	51	14.9	1,069	88	13	55	15.3	1,081
350	62	7	34	6.5	1,134	80	13	50	12.9	1,320	88	13	54	13.2	1,333
400	62	7	34	5.7	1,521	80	13	50	11.3	1,735	88	13	54	11.6	1,750
450	62	7	33	5.1	1,878	80	13	49	10.1	2,116	88	13	53	10.3	2,132
500	62	7	33	4.6	2,290	80	13	49	9.1	2,552	88	13	52	9.3	2,570
600	62	7	33	3.8	3,187	80	13	48	7.6	3,494	88	13	52	7.8	3,515
700	62	7	32	3.3	4,312	80	13	47	6.5	4,669	88	13	51	6.7	4,693
800	62	7	32	2.9	5,555	80	13	47	5.7	5,958	88	13	50	5.9	5,986
900	62	7	31	2.5	6,910	80	13	46	5.1	7,359	88	13	50	5.2	7,390
1000	62	7	31	2.3	8,462	80	13	46	4.6	8,958	88	13	49	4.7	8,992
1100	62	7	31	2.1	10,171	80	13	45	4.2	10,715	88	13	49	4.3	10,751
1200	62	7	31	1.9	12,037	80	13	45	3.8	12,628	88	13	48	3.9	12,668

					Install	ation le	ngth (L	at de	sign pre	essure					
		up to 10	bar L ∈ =	500 mm			up to 10	bar L ∈ =	550 mm			up to 10	bar L ∈ =	600 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***			\times		**			₩		**			₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	106	20	74	31.4	707	124	27	91	39.4	855	138	28	99	40.4	897
250	106	20	72	26.0	968	124	27	89	33.3	1,140	138	28	97	34.2	1,188
300	106	20	71	22.1	1,263	124	27	88	28.7	1,459	138	28	95	29.5	1,514
350	106	20	70	19.2	1,534	124	27	86	25.1	1,750	138	28	94	25.9	1,810
400	106	20	69	17.0	1,979	124	27	85	22.3	2,223	138	28	93	23.0	2,290
450	106	20	69	15.2	2,384	124	27	84	20.0	2,651	138	28	92	20.7	2,725
500	106	20	68	13.7	2,846	124	27	84	18.2	3,137	138	28	91	18.8	3,217
600	106	20	67	11.5	3,837	124	27	82	15.3	4,174	138	28	89	15.8	4,266
700	106	20	66	9.9	5,064	124	27	81	13.2	5,450	138	28	88	13.7	5,555
800	106	20	65	8.7	6,404	124	27	80	11.6	6,837	138	28	87	12.0	6,955
900	106	20	64	7.7	7,854	124	27	79	10.3	8,332	138	28	86	10.7	8,462
1000	106	20	64	7.0	9,503	124	27	79	9.3	10,029	138	28	85	9.6	10,171
1100	106	20	63	6.3	11,310	124	27	78	8.5	11,882	138	28	84	8.8	12,037
1200	106	20	63	5.8	13,273	124	27	77	7.8	13,893	138	28	84	8.1	14,061

Recommended sizes Further possible sizes Angular movement only possible with guided external support ring. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

D122A

> with embedded vacuum rings

D125A

> with embedded vacuum rings, with external support ring

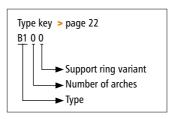
					Install	ation le	ngth (L) at de	sign pre	essure					
		up to 10	bar $L_E =$	350 mm			up to 10	bar L ∈ =	400 mm			up to 10	bar L ∈ =	450 mm	
							higher pr	essures o	n request						
		Move	ment		А		Move	ment		Α		Move	ment		Α
Ø	***			\times		★			\times		***	*		\(\tau\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	41	5	34	8.0	401	52	12	51	19.3	515	58	12	55	20.3	531
250	41	5	33	6.4	603	52	12	50	15.6	740	58	12	54	16.5	760
300	41	5	32	5.3	840	52	12	49	13.1	1,001	58	12	53	13.9	1,024
350	41	5	32	4.6	1,064	52	12	48	11.3	1,244	58	12	52	11.9	1,269
400	41	5	32	4.0	1,439	52	12	48	9.9	1,647	58	12	52	10.5	1,676
450	41	5	31	3.6	1,787	52	12	47	8.8	2,019	58	12	51	9.3	2,051
500	41	5	31	3.2	2,190	52	12	47	8.0	2,445	58	12	51	8.4	2,481
600	41	5	30	2.7	3,068	52	12	46	6.7	3,370	58	12	50	7.0	3,411
700	41	5	30	2.3	4,174	52	12	45	5.7	4,525	58	12	49	6.0	4,572
800	41	5	30	2.0	5,398	52	12	45	5.0	5,795	58	12	49	5.3	5,849
900	41	5	29	1.8	6,735	52	12	44	4.4	7,178	58	12	48	4.7	7,238
1000	41	5	29	1.6	8,268	52	12	44	4.0	8,758	58	12	48	4.2	8,825
1100	41	5	29	1.5	9,958	52	12	43	3.6	10,496	58	12	47	3.8	10,568
1200	41	5	29	1.3	11,805	52	12	43	3.3	12,390	58	12	47	3.5	12,469

					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar L ∈ =	500 mm			up to 10	bar L _E =	550 mm			up to 10	bar L _E =	600 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***	*		\times		***	*	\square	\times		***	₹		₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	70	19	72	29.7	661	82	26	89	38.0	804	91	26	95	38.0	804
250	70	19	71	24.5	913	82	26	87	32.0	1,081	91	26	94	32.0	1,081
300	70	19	69	20.8	1,201	82	26	86	27.5	1,392	91	26	92	27.5	1,392
350	70	19	69	18.0	1,466	82	26	85	24.0	1,676	91	26	91	24.0	1,676
400	70	19	68	15.9	1,901	82	26	84	21.3	2,140	91	26	90	21.3	2,140
450	70	19	67	14.2	2,299	82	26	83	19.1	2,561	91	26	89	19.1	2,561
500	70	19	66	12.8	2,753	82	26	82	17.3	3,039	91	26	88	17.3	3,039
600	70	19	65	10.8	3,728	82	26	81	14.6	4,060	91	26	86	14.6	4,060
700	70	19	64	9.2	4,939	82	26	79	12.6	5,320	91	26	85	12.6	5,320
800	70	19	64	8.1	6,263	82	26	78	11.0	6,691	91	26	84	11.0	6,691
900	70	19	63	7.2	7,698	82	26	78	9.8	8,171	91	26	83	9.8	8,171
1000	70	19	62	6.5	9,331	82	26	77	8.9	9,852	91	26	82	8.9	9,852
1100	70	19	62	5.9	11,122	82	26	76	8.1	11,690	91	26	82	8.1	11,690
1200	70	19	61	5.4	13,070	82	26	76	7.4	13,685	91	26	81	7.4	13,685

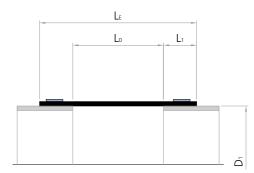
Recommended sizes Further possible sizes Angular movement only possible with guided external support ring.

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.


Universal expansion joints for clamped fixing

Cylindrical Expansion Joints without Arch Universal expansion joint without arch > 172 **Single Arch Expansion Joints** B110 Universal expansion joint with one arch **>** 176 **Double Arch Expansion Joints** B120 Universal expansion joints with two arches > 182 **Triple or Multiple Arch Expansion Joints** B130 Universal expansion joints with three or more arches > 188 **Reducer Expansion Joints** B300 Concentric or eccentric reducing expansion joint > 194


B100 Ø 50 - 5,000 mm

> Type B100

Cross section B100

Universal expansion joint without arch

Design: Streamlined, cylindrical slip-on sleeve type rubber bellows, designed

to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and fixing clamps. Optional with embedded support rings. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Available in split-wrap or custom offset arrangements.

Diameters: Ø 50 to 5,000 mm, custom diameters possible

Length: = Installation gap + 2x fixing width

 $L_0 = 125$ to 250 mm (standard installation gaps) (> page 174)

Custom length on request

Fixing width: At least 40 mm

Depends on pressure, diameter and clamp type

Pressure: Up to 6 bar depending on diameter and length

Vacuum stability on request

Movement: For low axial and lateral movements

For axial extension or vacuum, the expansion joint can slip of the pipeline (groove as needed at the pipeline end)

→ † † (> page 174)

Application:

Power plants, plant construction, food processing, wastewater treatment plants, industrial facilities, e.g. to disconnect pipelines, on oscillating conveyor systems, on sieving machines

instructions at: www.ditec-adam.de/ en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Clamps

Design: Depending on pressure and diameter, endless clamp belt, screw thread belt, small

clamps or hinge bolt clamps. At higher pressures, 2 parallel clamps per side

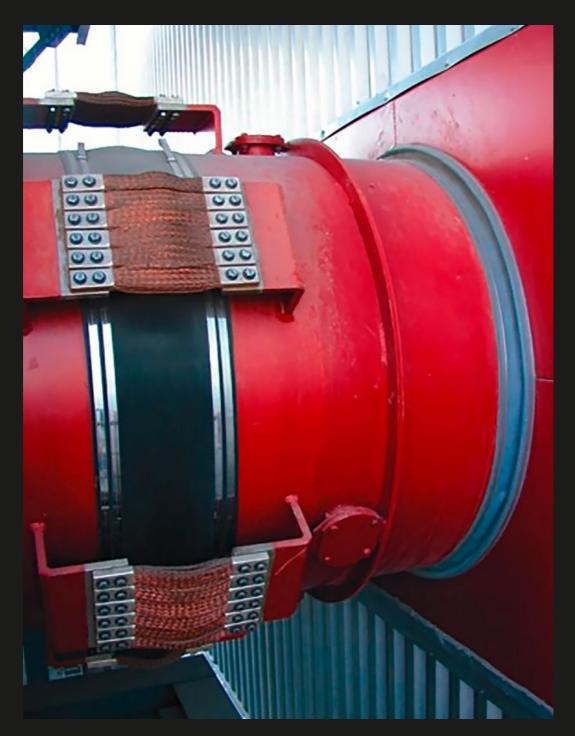
Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm Hinge bolt clamp: depending on Ø: 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

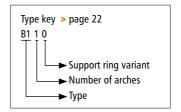
Screw thread belt with threaded screw lugs: 1.4310


Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

> without arch

						1	nstallat	ion gar	1						
		I.	= 125 m	ım				= 150 m				1.	= 175 m	ım	
_		L 0	- 125 II	1111	_		L 0	- 150 H	1111	_		L 0	- 175 II	1111	_
		Move	ment				Move	ement				Move	ement		
Ø	IAI	اما	l L	101	A	اما		المار المار	101	A	IAI	اما	المار المار	101	A
Ø	- []-		₹ ₹					K 3					K 3		
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	6	0	10	0	29	8	0	11	0	29	9	0	13	0	29
65	6	0	9	0	45	8	0	11	0	45	9	0	13	0	45
80	6	0	9	0	62	8	0	10	0	62	9	0	12	0	62
100	6	0	8	0	103	8	0	10	0	103	9	0	12	0	103
125	6	0	8	0	153	8	0	10	0	153	9	0	11	0	153
150	6	0	8	0	222	8	0	9	0	222	9	0	11	0	222
175	6	0	7	0	295	8	0	9	0	295	9	0	10	0	295
200	6	0	7	0	377	8	0	9	0	377	9	0	10	0	377
250	6	0	7	0	585	8	0	8	0	585	9	0	10	0	585
300	6	0	7	0	824	8	0	8	0	824	9	0	9	0	824
350	6	0	6	0	993	8	0	8	0	993	9	0	9	0	993
400	6	0	6	0	1,297	8	0	8	0	1,297	9	0	9	0	1,297
450	6	0	6	0	1,642	8	0	7	0	1,642	9	0	9	0	1,642
500	6	0	6	0	2,027	8	0	7	0	2,027	9	0	8	0	2,027
550	6	0	6	0	2,452	8	0	7	0	2,452	9	0	8	0	2,452
600	6	0	6	0	2,919	8	0	7	0	2,919	9	0	8	0	2,919
650	6	0	6	0	3,425	8	0	7	0	3,425	9	0	8	0	3,425
700	6	0	6	0	3,973	8	0	7	0	3,973	9	0	8	0	3,973
750	6	0	6	0	4,560	8	0	7	0	4,560	9	0	8	0	4,560
800	6	0	5	0	5,189	8	0	7	0	5,189	9	0	8	0	5,189
850	6	0	5	0	5,858	8	0	6	0	5,858	9	0	8	0	5,858
900	6	0	5	0	6,567	8	0	6	0	6,567	9	0	7	0	6,567
1000	6	0	5	0	8,107	8	0	6	0	8,107	9	0	7	0	8,107
1100	6	0	5	0	9,607	8	0	6	0	9,607	9	0	7	0	9,607
1200	6	0	5	0	11,404	8	0	6	0	11,404	9	0	7	0	11,404
1300	6	0	5	0	13,376	8	0	6	0	13,376	9	0	7	0	13,376
1400	6	0	5	0	15,504	8	0	6	0	15,504	9	0	7	0	15,504
1500	6	0	5	0	17,789	8	0	6	0	17,789	9	0	7	0	17,789

							nstalla [.]	tion gap							
	L	₀ = 200 n	nm			Lo	= 225 n	nm			Lo	= 250 n	ım		
	Mov	ement		Α		Move	ment		Α		Move	ment		Α	
-\S		±mm	±°	cm ²	► Mm	mm mm	±mm	±°	cm ²	► Mm	mm mm	±mm	±°	cm ²	Ø
10	0	15	0	29	11	0	17	0	29	13	0	19	0	29	50
10	0	14	0	45	11	0	16	0	45	13	0	18	0	45	65
10	0	14	0	62	11	0	16	0	62	13	0	17	0	62	80
10	0	13	0	103	11	0	15	0	103	13	0	17	0	103	100
10	0	13	0	153	11	0	14	0	153	13	0	16	0	153	125
10	0	12	0	222	11	0	14	0	222	13	0	15	0	222	150
10	0	12	0	295	11	0	13	0	295	13	0	15	0	295	175
10	0	12	0	377	11	0	13	0	377	13	0	14	0	377	200
10	0	11	0	585	11	0	12	0	585	13	0	14	0	585	250
10	0	11	0	824	11	0	12	0	824	13	0	13	0	824	300
10	0	10	0	993	11	0	12	0	993	13	0	13	0	993	350
10	0	10	0	1,297	11	0	11	0	1,297	13	0	13	0	1,297	400
10	0	10	0	1,642	11	0	11	0	1,642	13	0	12	0	1,642	450
10	0	10	0	2,027	11	0	11	0	2,027	13	0	12	0	2,027	500
10	0	9	0	2,452	11	0	11	0	2,452	13	0	12	0	2,452	550
10	0	9	0	2,919	11	0	10	0	2,919	13	0	12	0	2,919	600
10	0	9	0	3,425	11	0	10	0	3,425	13	0	11	0	3,425	650
10	0	9	0	3,973	11	0	10	0	3,973	13	0	11	0	3,973	700
10	0	9	0	4,560	11	0	10	0	4,560	13	0	11	0	4,560	750
10	0	9	0	5,189	11	0	10	0	5,189	13	0	11	0	5,189	800
10	0	9	0	5,858	11	0	10	0	5,858	13	0	11	0	5,858	850
10	0	9	0	6,567	11	0	10	0	6,567	13	0	11	0	6,567	900
10	0	8	0	8,107	11	0	9	0	8,107	13	0	10	0	8,107	1000
10	0	8	0	9,607	11	0	9	0	9,607	13	0	10	0	9,607	1100
10	0	8	0	11,404	11	0	9	0	11,404	13	0	10	0	11,404	1200
10	0	8	0	13,376	11	0	9	0	13,376	13	0	10	0	13,376	1300
10	0	8	0	15,504	11	0	9	0	15,504	13	0	10	0	15,504	1400
10	0	8	0	17,789	11	0	9	0	17,789	13	0	10	0	17,789	1500


Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; lateral displacement: -50 %. Larger movements see type B110.

Pipe penetration seal and clamped EPDM rubber expansion joint penetration seal made from silicone rubber with open seam for afterwards closing on site

- > Type B110 without vacuum ring
- > Type B111 with internal vacuum ring
- > Type B112 with embedded vacuum ring

Universal expansion joint with one arch

Design: Streamlined, single wide arch slip-on sleeve type rubber bellows,

designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and fixing clamps. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Available in split-wrap or custom offset arrangements.

Diameters: Ø 50 to 5,000 mm, custom diameters possible

Length: = Installation gap + 2x fixing width

 $L_0 = 125$ to 250 mm (standard installation gaps) (> page 179–181)

Custom length on request

Fixing width: At least 40 mm

Depends on pressure, diameter and clamp type

Pressure: Up to 6 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar absolute

Movement: For axial, lateral and angular movements

For axial extension or vacuum, the expansion joint can slip of the pipeline (groove as needed at the pipeline end)

→ ↑ ↑ ↑ ↑ ↑ ↑ (> page 179–181)

Application:

Power plants, plant construction, food processing, wastewater treatment plants, industrial facilities, e.g. to disconnect pipelines, on oscillating conveyor systems, on sieving machines

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 179–181)

Clamps

Design: Depending on pressure and diameters, endless clamp belt, screw thread belt, small

clamps or hinge bolt clamps. At higher pressures, 2 parallel clamps per side

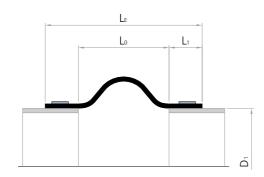
Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on \emptyset : 9–12 mm Hinge bolt clamp: depending on \emptyset : 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310


Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

178 Universal expansion joints for clamped fixing

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
B110		None	Depending on the diameter up to 6 bar, vacuum stability on request	> page 179
B111		Medium contact, inside the arch	Depending on the diameter up to 6 bar, for vacuum up to 0.05 bar absolute	> page 180
B112		No medium contact, embedded in the arches	Depending on the diameter up to 6 bar, for vacuum up to 0.05 bar absolute	> page 181
Material	S			
Stainless	steel	Carbon steel, rubberised	Carbon steel, emb	oedded

Cross section B110

Example: Type B112

						- 1	nstallat	ion gap)						
		Lo	= 125 n	ım			Lo	= 150 m	ım			Lo	= 175 m	ım	
		-													
		Move	ment		Α		Move	ment		Α		Move	ement		Α
Ø	*			\times		***			\(\int\)		***			\(\int\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	31	10	20	21.8	96	40	20	30	38.7	155	44	20	32	38.7	159
65	31	10	20	17.1	125	40	20	29	31.6	191	44	20	32	31.6	196
80	31	10	20	14.0	152	40	20	29	26.6	224	44	20	31	26.6	229
100	31	10	19	11.3	212	40	20	28	21.8	297	44	20	30	21.8	303
125	31	10	19	9.1	283	40	20	28	17.7	379	44	20	30	17.7	386
150	31	10	18	7.6	374	40	20	27	14.9	484	44	20	29	14.9	492
175	31	10	18	6.5	466	40	20	27	12.9	588	44	20	29	12.9	597
200	31	10	18	5.7	569	40	20	26	11.3	703	44	20	29	11.3	712
250	31	10	18	4.6	819	40	20	26	9.1	979	44	20	28	9.1	990
300	31	10	17	3.8	1,098	40	20	26	7.6	1,281	44	20	27	7.6	1,294
350	31	10	17	3.3	1,292	40	20	25	6.5	1,490	44	20	27	6.5	1,504
400	31	10	17	2.9	1,636	40	20	25	5.7	1,858	44	20	27	5.7	1,873
450	31	10	17	2.5	2,020	40	20	25	5.1	2,267	44	20	26	5.1	2,283
500	31	10	17	2.3	2,445	40	20	24	4.6	2,715	44	20	26	4.6	2,734
550	31	10	16	2.1	2,911	40	20	24	4.2	3,205	44	20	26	4.2	3,225
600	31	10	16	1.9	3,417	40	20	24	3.8	3,735	44	20	26	3.8	3,757
650	31	10	16	1.8	3,964	40	20	24	3.5	4,305	44	20	26	3.5	4,329
700	31	10	16	1.6	4,551	40	20	24	3.3	4,917	44	20	25	3.3	4,941
750	31	10	16	1.5	5,178	40	20	23	3.1	5,568	44	20	25	3.1	5,595
800	31	10	16	1.4	5,847	40	20	23	2.9	6,260	44	20	25	2.9	6,288
850	31	10	16	1.3	6,555	40	20	23	2.7	6,993	44	20	25	2.7	7,023
900	31	10	16	1.3	7,305	40	20	23	2.5	7,766	44	20	25	2.5	7,798
1000	31	10	16	1.1	8,925	40	20	23	2.3	9,434	44	20	25	2.3	9,469
1100	31	10	15	1.0	10,496	40	20	23	2.1	11,047	44	20	24	2.1	11,085
1200	31	10	15	1.0	12,370	40	20	22	1.9	12,969	44	20	24	1.9	13,009
1300	31	10	15	0.9	14,420	40	20	22	1.8	15,066	44	20	24	1.8	15,109
1400	31	10	15	0.8	16,627	40	20	22	1.6	17,320	44	20	24	1.6	17,366
1500	31	10	15	0.8	18,991	40	20	22	1.5	19,731	44	20	24	1.5	19,781

						- 1	nstallat	ion gap)						
		Lo	= 200 m	ım			L ₀	= 225 m	ım			L ₀	= 250 m	ım	
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***	\rightleftharpoons		\tilde{\t		**	\Rightarrow		\tilde{\t		₹		\square	\tilde{\t	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	53	31	42	51.1	233	60	32	46	52.0	255	69	43	56	59.8	347
65	53	31	41	43.6	278	60	32	45	44.6	302	69	43	55	52.9	402
80	53	31	40	37.8	317	60	32	44	38.7	343	69	43	54	47.1	448
100	53	31	39	31.8	402	60	32	44	32.6	431	69	43	53	40.7	549
125	53	31	39	26.4	498	60	32	43	27.1	530	69	43	51	34.5	659
150	53	31	38	22.5	617	60	32	42	23.1	653	69	43	51	29.8	796
175	53	31	37	19.5	734	60	32	41	20.1	773	69	43	50	26.2	928
200	53	31	37	17.2	861	60	32	41	17.7	903	69	43	49	23.3	1,070
250	53	31	36	13.9	1,164	60	32	40	14.4	1,213	69	43	48	19.0	1,405
300	53	31	36	11.7	1,492	60	32	39	12.0	1,548	69	43	48	16.0	1,764
350	53	31	35	10.0	1,717	60	32	39	10.4	1,777	69	43	47	13.8	2,008
400	53	31	35	8.8	2,111	60	32	38	9.1	2,176	69	43	46	12.1	2,431
450	53	31	34	7.8	2,545	60	32	38	8.1	2,617	69	43	46	10.8	2,896
500	53	31	34	7.1	3,019	60	32	38	7.3	3,097	69	43	45	9.8	3,400
550	53	31	34	6.4	3,534	60	32	37	6.6	3,619	69	43	45	8.9	3,946
600	53	31	33	5.9	4,090	60	32	37	6.1	4,181	69	43	45	8.2	4,532
650	53	31	33	5.4	4,686	60	32	37	5.6	4,783	69	43	44	7.5	5,158
700	53	31	33	5.1	5,322	60	32	36	5.2	5,426	69	43	44	7.0	5,825
750	53	31	33	4.7	5,999	60	32	36	4.9	6,110	69	43	44	6.5	6,533
800	53	31	33	4.4	6,717	60	32	36	4.6	6,834	69	43	43	6.1	7,281
850	53	31	32	4.2	7,475	60	32	36	4.3	7,598	69	43	43	5.8	8,069
900	53	31	32	3.9	8,274	60	32	36	4.1	8,404	69	43	43	5.5	8,898
1000	53	31	32	3.5	9,993	60	32	35	3.7	10,136	69	43	43	4.9	10,678
1100	53	31	32	3.2	11,652	60	32	35	3.3	11,805	69	43	42	4.5	12,390
1200	53	31	31	3.0	13,623	60	32	35	3.1	13,789	69	43	42	4.1	14,420
1300	53	31	31	2.7	15,770	60	32	34	2.8	15,948	69	43	42	3.8	16,627
1400	53	31	31	2.5	18,074	60	32	34	2.6	18,265	69	43	41	3.5	18,991
1500	53	31	31	2.4	20,536	60	32	34	2.4	20,739	69	43	41	3.3	21,512

Recommended sizes
Further possible sizes

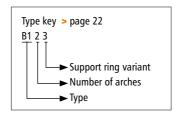
Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -66 %; lateral displacement: -50 %; angular movement: -66 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type B120 or B123.

						- 1	nstallat	ion gap)						
		Lo	= 125 m	ım			Lo	= 150 m	ım			L ₀	= 175 m	ım	
		Move	ment		Α		Move	ment		Α		Move	ement		Α
Ø	→			\times	Ŵ	→			\(\frac{1}{2}\)		+\}-			\(\frac{1}{2}\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	31	3	20	21.8	96	40	7	30	38.7	155	44	7	32	38.7	159
65	31	3	20	17.1	125	40	7	29	31.6	191	44	7	32	31.6	196
80	31	3	20	14.0	152	40	7	29	26.6	224	44	7	31	26.6	229
100	31	3	19	11.3	212	40	7	28	21.8	297	44	7	30	21.8	303
125	31	3	19	9.1	283	40	7	28	17.7	379	44	7	30	17.7	386
150	31	3	18	7.6	374	40	7	27	14.9	484	44	7	29	14.9	492
175	31	3	18	6.5	466	40	7	27	12.9	588	44	7	29	12.9	597
200	31	3	18	5.7	569	40	7	26	11.3	703	44	7	29	11.3	712
250	31	3	18	4.6	819	40	7	26	9.1	979	44	7	28	9.1	990
300	31	3	17	3.8	1,098	40	7	26	7.6	1,281	44	7	27	7.6	1,294
350	31	3	17	3.3	1,292	40	7	25	6.5	1,490	44	7	27	6.5	1,504
400	31	3	17	2.9	1,636	40	7	25	5.7	1,858	44	7	27	5.7	1,873
450	31	3	17	2.5	2,020	40	7	25	5.1	2,267	44	7	26	5.1	2,283
500	31	3	17	2.3	2,445	40	7	24	4.6	2,715	44	7	26	4.6	2,734
550	31	3	16	2.1	2,911	40	7	24	4.2	3,205	44	7	26	4.2	3,225
600	31	3	16	1.9	3,417	40	7	24	3.8	3,735	44	7	26	3.8	3,757
650	31	3	16	1.8	3,964	40	7	24	3.5	4,305	44	7	26	3.5	4,329
700	31	3	16	1.6	4,551	40	7	24	3.3	4,917	44	7	25	3.3	4,941
750	31	3	16	1.5	5,178	40	7	23	3.1	5,568	44	7	25	3.1	5,595
800	31	3	16	1.4	5,847	40	7	23	2.9	6,260	44	7	25	2.9	6,288
850	31	3	16	1.3	6,555	40	7	23	2.7	6,993	44	7	25	2.7	7,023
900	31	3	16	1.3	7,305	40	7	23	2.5	7,766	44	7	25	2.5	7,798
1000	31	3	16	1.1	8,925	40	7	23	2.3	9,434	44	7	25	2.3	9,469
1100	31	3	15	1.0	10,496	40	7	23	2.1	11,047	44	7	24	2.1	11,085
1200	31	3	15	1.0	12,370	40	7	22	1.9	12,969	44	7	24	1.9	13,009
1300	31	3	15	0.9	14,420	40	7	22	1.8	15,066	44	7	24	1.8	15,109
1400	31	3	15	8.0	16,627	40	7	22	1.6	17,320	44	7	24	1.6	17,366
1500	31	3	15	0.8	18,991	40	7	22	1.5	19,731	44	7	24	1.5	19,781

						I	nstallat	ion ga)						
		L _o	= 200 m	ım		$L_0 = 225 \text{ mm}$					L ₀ = 250 mm				
	Movement A					Movement A					Movement A				
Ø	***					***			\(\tau_{\tau}\)		***			\(\text{\tint{\text{\tint{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\xi}\\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	53	10	42	51	233	60	11	46	52	255	69	14	56	60	347
65	53	10	41	43.6	278	60	11	45	44.6	302	69	14	55	52.9	402
80	53	10	40	37.8	317	60	11	44	38.7	343	69	14	54	47.1	448
100	53	10	39	31.8	402	60	11	44	32.6	431	69	14	53	40.7	549
125	53	10	39	26.4	498	60	11	43	27.1	530	69	14	51	34.5	659
150	53	10	38	22.5	617	60	11	42	23.1	653	69	14	51	29.8	796
175	53	10	37	19.5	734	60	11	41	20.1	773	69	14	50	26.2	928
200	53	10	37	17.2	861	60	11	41	17.7	903	69	14	49	23.3	1,070
250	53	10	36	13.9	1,164	60	11	40	14.4	1,213	69	14	48	19	1,405
300	53	10	36	11.7	1,492	60	11	39	12	1,548	69	14	48	16	1,764
350	53	10	35	10	1,717	60	11	39	10.4	1,777	69	14	47	13.8	2,008
400	53	10	35	8.8	2,111	60	11	38	9.1	2,176	69	14	46	12.1	2,431
450	53	10	34	7.8	2,545	60	11	38	8.1	2,617	69	14	46	10.8	2,896
500	53	10	34	7.1	3,019	60	11	38	7.3	3,097	69	14	45	9.8	3,400
550	53	10	34	6.4	3,534	60	11	37	6.6	3,619	69	14	45	8.9	3,946
600	53	10	33	5.9	4,090	60	11	37	6.1	4,181	69	14	45	8.2	4,532
650	53	10	33	5.4	4,686	60	11	37	5.6	4,783	69	14	44	7.5	5,158
700	53	10	33	5.1	5,322	60	11	36	5.2	5,426	69	14	44	7	5,825
750	53	10	33	4.7	5,999	60	11	36	4.9	6,110	69	14	44	6.5	6,533
800	53	10	33	4.4	6,717	60	11	36	4.6	6,834	69	14	43	6.1	7,281
850	53	10	32	4.2	7,475	60	11	36	4.3	7,598	69	14	43	5.8	8,069
900	53	10	32	3.9	8,274	60	11	36	4.1	8,404	69	14	43	5.5	8,898
1000	53	10	32	3.5	9,993	60	11	35	3.7	10,136	69	14	43	4.9	10,678
1100	53	10	32	3.2	11,652	60	11	35	3.3	11,805	69	14	42	4.5	12,390
1200	53	10	31	3	13,623	60	11	35	3.1	13,789	69	14	42	4.1	14,420
1300	53	10	31	2.7	15,770	60	11	34	2.8	15,948	69	14	42	3.8	16,627
1400	53	10	31	2.5	18,074	60	11	34	2.6	18,265	69	14	41	3.5	18,991
1500	53	10	31	2.4	20,536	60	11	34	2.4	20,739	69	14	41	3.3	21,512

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type B121 or B124.

	Installation gap														
		Lo	= 125 m	ım			Lo	= 150 m	ım			Lo	= 175 m	ım	
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	+\$}+		N	₩		***			\times		**			\tag{\tag{\tag{\tag{\tag{\tag{\tag{	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
	0 20	2	19	15.6	76	26	6	29	35.8	129	29	6	31	35.8	137
6	5 20	2	19	12.2	102	26	6	28	29.0	163	29	6	31	29.0	172
-	0 20	2	18	9.9	126	26	6	27	24.2	193	29	6	30	24.2	203
10	0 20	2	18	8.0	182	26	6	27	19.8	261	29	6	29	19.8	273
12		2	18	6.4	248	26	6	26	16.1	339	29	6	29	16.1	352
15		2	17	5.3	334	26	6	26	13.5	439	29	6	28	13.5	454
17		2	17	4.6	422	26	6	26	11.6	538	29	6	28	11.6	554
20		2	17	4.0	519	26	6	25	10.2	647	29	6	28	10.2	666
25	0 20	2	16	3.2	760	26	6	25	8.2	913	29	6	27	8.2	935
30		2	16	2.7	1,029	26	6	24	6.8	1,206	29	6	27	6.8	1,231
35		2	16	2.3	1,217	26	6	24	5.9	1,409	29	6	26	5.9	1,436
40	0 20	2	16	2.0	1,551	26	6	24	5.1	1,768	29	6	26	5.1	1,798
45	0 20	2	16	1.8	1,926	26	6	23	4.6	2,166	29	6	26	4.6	2,200
50	0 20	2	15	1.6	2,341	26	6	23	4.1	2,606	29	6	25	4.1	2,642
55	0 20	2	15	1.5	2,797	26	6	23	3.7	3,086	29	6	25	3.7	3,125
60	0 20	2	15	1.3	3,294	26	6	23	3.4	3,606	29	6	25	3.4	3,649
65	0 20	2	15	1.2	3,831	26	6	23	3.2	4,167	29	6	25	3.2	4,213
70	0 20	2	15	1.1	4,408	26	6	23	2.9	4,769	29	6	25	2.9	4,818
75	0 20	2	15	1.1	5,027	26	6	22	2.7	5,411	29	6	24	2.7	5,463
80	0 20	2	15	1.0	5,685	26	6	22	2.6	6,093	29	6	24	2.6	6,149
85	0 20	2	15	0.9	6,384	26	6	22	2.4	6,816	29	6	24	2.4	6,875
90		2	15	0.9	7,124	26	6	22	2.3	7,580	29	6	24	2.3	7,642
100		2	15	0.8	8,725	26	6	22	2.1	9,229	29	6	24	2.1	9,297
110		2	14	0.7	10,279	26	6	22	1.9	10,825	29	6	24	1.9	10,899
120		2	14	0.7	12,135	26	6	21	1.7	12,728	29	6	23	1.7	12,808
130	0 20	2	14	0.6	14,166	26	6	21	1.6	14,806	29	6	23	1.6	14,892
140		2	14	0.6	16,354	26	6	21	1.5	17,041	29	6	23	1.5	17,134
150	0 20	2	14	0.5	18,699	26	6	21	1.4	19,433	29	6	23	1.4	19,532


	Installation gap														
		Lo	= 200 m	ım			L _o	= 225 m	ım			L ₀	= 250 m	ım	
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***	₹		\tilde{\t		₩			\tilde{\t		***	₹		\(\tau_{\tau}\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	35	9	41	49	207	40	9	45	49	207	46	13	54	57	290
65	35	9	40	41.7	249	40	9	43	41.7	249	46	13	53	50.2	340
80	35	9	39	35.9	286	40	9	43	35.9	286	46	13	52	44.3	383
100	35	9	38	30.1	367	40	9	42	30.1	367	46	13	51	38	476
125	35	9	38	24.9	459	40	9	41	24.9	459	46	13	50	32	580
150	35	9	37	21.1	574	40	9	40	21.1	574	46	13	49	27.5	708
175	35	9	36	18.3	687	40	9	40	18.3	687	46	13	48	24	833
200	35	9	36	16.2	810	40	9	39	16.2	810	46	13	48	21.3	968
250	35	9	35	13.1	1,104	40	9	38	13.1	1,104	46	13	47	17.3	1,288
300	35	9	35	10.9	1,425	40	9	38	10.9	1,425	46	13	46	14.6	1,632
350	35	9	34	9.4	1,645	40	9	37	9.4	1,645	46	13	45	12.6	1,867
400	35	9	34	8.3	2,030	40	9	37	8.3	2,030	46	13	45	11	2,277
450	35	9	33	7.3	2,456	40	9	36	7.3	2,456	46	13	44	9.8	2,727
500	35	9	33	6.6	2,922	40	9	36	6.6	2,922	46	13	44	8.9	3,217
550	35	9	33	6	3,429	40	9	36	6	3,429	46	13	44	8.1	3,748
600	35	9	33	5.5	3,977	40	9	36	5.5	3,977	46	13	43	7.4	4,319
650	35	9	32	5.1	4,565	40	9	35	5.1	4,565	46	13	43	6.8	4,931
700	35	9	32	4.7	5,194	40	9	35	4.7	5,194	46	13	43	6.4	5,584
750	35	9	32	4.4	5,863	40	9	35	4.4	5,863	46	13	42	5.9	6,277
800	35	9	32	4.1	6,573	40	9	35	4.1	6,573	46	13	42	5.6	7,011
850	35	9	32	3.9	7,323	40	9	34	3.9	7,323	46	13	42	5.2	7,785
900	35	9	31	3.7	8,114	40	9	34	3.7	8,114	46	13	42	5	8,600
1000	35	9	31	3.3	9,817	40	9	34	3.3	9,817	46	13	41	4.5	10,351
1100	35	9	31	3	11,461	40	9	34	3	11,461	46	13	41	4.1	12,037
1200	35	9	31	2.8	13,417	40	9	33	2.8	13,417	46	13	41	3.7	14,040
1300	35	9	30	2.6	15,548	40	9	33	2.6	15,548	46	13	40	3.4	16,218
1400	35	9	30	2.4	17,837	40	9	33	2.4	17,837	46	13	40	3.2	18,554
1500	35	9	30	2.2	20,283	40	9	33	2.2	20,283	46	13	40	3	21,047

Recommended sizes
Further possible sizes

Reduction of movement for expansion joints with PTFE lining: axial compression: -0 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type B122 or B125.

- > Type B120 without vacuum rings
- > Type B121 with internal vacuum rings
- > Type B122 with embedded vacuum rings
- > Type B123 without vacuum rings, with external support ring
- > Type B124 with internal vacuum rings, with external support ring
- > Type B125 with embedded vacuum rings, with external support ring

Universal expansion joint with two arches

Design: Streamlined, double wide arch slip-on sleeve type rubber bellows,

designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and fixing clamps. Optional with vacuum rings and/or external support ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87. Available in split-wrap or custom offset arrangements.

Diameters: \emptyset 50 to 5,000 mm, custom diameters possible

Length: = Installation gap + 2x fixing width

 $L_0 = 250$ to 500 mm (standard installation gaps) (> page 185–187)

Custom length on request

Fixing width: At least 40 mm

Depends on pressure, diameter and clamp type

Pressure: Up to 6 bar depending on diameter and length

Vacuum not allowed without vacuum rings, with vacuum rings

up to 0.05 bar absolute

Movement: For axial, lateral and angular movements

For axial extension or vacuum, the expansion joint can slip of the pipeline (groove as needed at the pipeline end)

Application:

Power plants, plant construction, food processing, wastewater treatment plants, industrial facilities, e.g. to disconnect pipelines, on oscillating conveyor systems, on sieving machines

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 185–187)

Clamps

Depending on pressure and the diameter, endless clamp belt, screw thread belt, small Design:

clamps or hinge bolt clamps. At higher pressures, 2 parallel clamps per side

Width: 3/4" Endless clamp belt:

> Screw thread belt: 1/2"

Small clamp: depending on Ø: 9-12 mm depending on Ø: 18-30 mm Hinge bolt clamp:

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310


Small clamp, belt and housing: 1.4016 (Screw steel galvanised) Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

184 Universal expansion joints for clamped fixing

Support rings

TYPE	Support rings		Vacuum ring	Support r	ing Pressure	Movement
B120		<u>_</u>	None	None	Low pressure, vacuum stability on request	> page 185
B121		<u>_</u>	Medium contact, inside the arch	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 186
B122		<u>_</u>	No medium contact, embedded in the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 187
B123		<u>_</u>	None	External between t arches	Depending on the diameter up to 6 bar, slight vacuum	> page 185
B124			Medium contact, inside the arch	External between t arches	Depending on the diameter up to 6 bar, for vacuum up to 0.05 bar absolute	> page 186
B125		<u></u>	No medium contact, embedded in the arches	External between t arches	Depending on the diameter up to 6 bar, for vacuum up to 0.05 bar absolute	> page 187
Materials	5					
Stainless	steel	Carbon steel,	rubberised	(Carbon steel, embedded	

Cross section B120

B120

> without vacuum rings

B123

> without vacuum rings, with external support ring

						1	nstallat	ion ga _l)						
		Lo	= 250 n	ım			Lo	= 300 n	ım			Lo	= 350 m	ım	
		Move	ment		Α		Move	ment		А		Move	ement		Α
Ø	***			\times		***	₹		$\overleftrightarrow{\Box}$		***	₹	\sim	\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	62	20	41	38.7	96	80	40	60	58.0	155	88	41	65	58.6	159
65	62	20	40	31.6	125	80	40	59	50.9	191	88	41	63	51.6	196
80	62	20	39	26.6	152	80	40	58	45.0	224	88	41	62	45.7	229
100	62	20	38	21.8	212	80	40	56	38.7	297	88	41	61	39.4	303
125	62	20	38	17.7	283	80	40	55	32.6	379	88	41	60	33.3	386
150	62	20	37	14.9	374	80	40	54	28.1	484	88	41	59	28.7	492
175	62	20	36	12.9	466	80	40	54	24.6	588	88	41	58	25.1	597
200	62	20	36	11.3	569	80	40	53	21.8	703	88	41	57	22.3	712
250	62	20	35	9.1	819	80	40	52	17.7	979	88	41	56	18.2	990
300	62	20	35	7.6	1,098	80	40	51	14.9	1,281	88	41	55	15.3	1,294
350	62	20	34	6.5	1,292	80	40	50	12.9	1,490	88	41	54	13.2	1,504
400	62	20	34	5.7	1,636	80	40	50	11.3	1,858	88	41	54	11.6	1,873
450	62	20	33	5.1	2,020	80	40	49	10.1	2,267	88	41	53	10.3	2,283
500	62	20	33	4.6	2,445	80	40	49	9.1	2,715	88	41	52	9.3	2,734
550	62	20	33	4.2	2,911	80	40	48	8.3	3,205	88	41	52	8.5	3,225
600	62	20	33	3.8	3,417	80	40	48	7.6	3,735	88	41	52	7.8	3,757
650	62	20	32	3.5	3,964	80	40	48	7.0	4,305	88	41	51	7.2	4,329
700 750	62 62	20 20	32 32	3.3 3.1	4,551	80 80	40 40	47 47	6.5	4,917	88 88	41 41	51 51	6.7 6.2	4,941
800	62	20	32	2.9	5,178 5,847	80	40	47 47	6.1 5.7	5,568	88	41	50	5.9	5,595
850	62	20	32	2.9	6,555	80	40	47	5.4	6,260 6,993	88	41	50	5.5	6,288 7,023
900	62	20	31	2.7	7,305	80	40	46	5.4	7,766	88	41	50	5.2	7,023
1000	62	20	31	2.3	8,925	80	40	46	4.6	9,434	88	41	49	4.7	9,469
1100	62	20	31	2.3	10.496	80	40	45	4.0	11.047	88	41	49	4.7	11,085
1200	62	20	31	1.9	12,370	80	40	45	3.8	12,969	88	41	48	3.9	13,009
1300	62	20	30	1.8	14,420	80	40	45	3.5	15,066	88	41	48	3.6	15,109
1400	62	20	30	1.6	16,627	80	40	44	3.3	17,320	88	41	48	3.4	17,366
1500	62	20	30	1.5	18,991	80	40	44	3.1	19,731	88	41	47	3.1	19,781

						- 1	nstallat	ion ga _l)						
		L۵	= 400 n	ım			L۵	= 450 n	ım			L۵	= 500 m	ım	
		_0					_0					_0			
		Move	ment		А		Move	ement		А		Move	ement		Α
Ø	***			\tilde{\t		***			\tilde{\t		***	₹		\(\tau_{\tau}\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	106	61	84	67.7	233	121	65	93	69	255	138	85	112	73.6	347
65	106	61	82	62	278	121	65	91	63.4	302	138	85	109	69.1	402
80	106	61	80	56.7	317	121	65	89	58.4	343	138	85	107	64.8	448
100	106	61	79	50.7	402	121	65	87	52.4	431	138	85	105	59.5	549
125	106	61	77	44.3	498	121	65	85	46.1	530	138	85	103	53.7	659
150	106	61	76	39.1	617	121	65	84	40.9	653	138	85	101	48.6	796
175	106	61	75	34.9	734	121	65	83	36.6	773	138	85	100	44.2	928
200	106	61	74	31.4	861	121	65	82	33	903	138	85	99	40.4	1,070
250	106	61	72	26	1,164	121	65	80	27.5	1,213	138	85	97	34.2	1,405
300	106	61	71	22.1	1,492	121	65	79	23.4	1,548	138	85	95	29.5	1,764
350	106	61	70	19.2	1,717	121	65	78	20.4	1,777	138	85	94	25.9	2,008
400	106	61	69	17	2,111	121	65	77	18	2,176	138	85	93	23	2,431
450	106	61	69	15.2	2,545	121	65	76	16.1	2,617	138	85	92	20.7	2,896
500	106	61	68	13.7	3,019	121	65	75	14.6	3,097	138	85	91	18.8	3,400
550	106	61	67	12.5	3,534	121	65	75	13.3	3,619	138	85	90	17.2	3,946
600	106	61	67	11.5	4,090	121	65	74	12.2	4,181	138	85	89	15.8	4,532
650	106	61	66	10.6	4,686	121	65	73	11.3	4,783	138	85	89	14.7	5,158
700	106	61	66	9.9	5,322	121	65	73	10.5	5,426	138	85	88	13.7	5,825
750	106	61	66	9.2	5,999	121	65	72	9.8	6,110	138	85	87	12.8	6,533
800	106	61	65	8.7	6,717	121	65	72	9.2	6,834	138	85	87	12	7,281
850	106	61	65	8.2	7,475	121	65	72	8.7	7,598	138	85	86	11.3	8,069
900	106	61	64	7.7	8,274	121	65	71	8.2	8,404	138	85	86	10.7	8,898
1000	106	61	64	7	9,993	121	65	71	7.4	10,136	138	85	85	9.6	10,678
1100	106	61	63	6.3	11,652	121	65	70	6.7	11,805	138	85	84	8.8	12,390
1200	106	61	63	5.8	13,623	121	65	69	6.2	13,789	138	85	84	8.1	14,420
1300	106	61	62	5.4	15,770	121	65	69	5.7	15,948	138	85	83	7.5	16,627
1400	106	61	62	5	18,074	121	65	68	5.3	18,265	138	85	83	6.9	18,991
1500	106	61	62	4.6	20,536	121	65	68	5	20,739	138	85	82	6.5	21,512

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -66 %; lateral displacement: -50 %; angular movement: -66 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Angular movement only possible with guided external support ring. For larger movements see type B130 or B133.

B121

> with internal vacuum rings

B124

> with internal vacuum rings, with external support ring

	Installation gap														
		L _o	= 125 m	ım			Lo	= 150 n	ım			L₀	= 175 m	ım	
		Move	ment		Α		Move	ment		Α		Move	ement		Α
Ø	***			\rightleftharpoons		***			\times		***	₹		₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	62	7	41	38.7	96	80	13	60	58.0	155	88	13	65	58.6	159
65	62	7	40	31.6	125	80	13	59	50.9	191	88	13	63	51.6	196
80	62	7	39	26.6	152	80	13	58	45.0	224	88	13	62	45.7	229
100	62	7	38	21.8	212	80	13	56	38.7	297	88	13	61	39.4	303
125	62	7	38	17.7	283	80	13	55	32.6	379	88	13	60	33.3	386
150	62	7	37	14.9	374	80	13	54	28.1	484	88	13	59	28.7	492
175	62	7	36	12.9	466	80	13	54	24.6	588	88	13	58	25.1	597
200	62	7	36	11.3	569	80	13	53	21.8	703	88	13	57	22.3	712
250	62	7	35	9.1	819	80	13	52	17.7	979	88 88	13 13	56	18.2	990
300 350	62 62	7 7	35 34	7.6 6.5	1,098 1,292	80 80	13 13	51 50	14.9	1,281	88 88	13	55 54	15.3 13.2	1,294 1,504
400	62	7	34 34	6.5 5.7	1,636	80	13	50 50	12.9 11.3	1,490 1,858	88	13	54 54	11.6	
400 450	62	7	33	5.7 5.1	2,020	80	13	49	10.1	2,267	88	13	54 53	10.3	1,873 2,283
500	62	7	33	4.6	2,445	80	13	49	9.1	2,715	88	13	52	9.3	2,283
550	62	7	33	4.0	2,443	80	13	49	8.3	3,205	88	13	52	8.5	3,225
600	62	7	33	3.8	3,417	80	13	48	7.6	3,735	88	13	52	7.8	3,757
650	62	7	32	3.5	3,964	80	13	48	7.0	4,305	88	13	51	7.2	4,329
700	62	7	32	3.3	4.551	80	13	47	6.5	4,917	88	13	51	6.7	4,941
750	62	7	32	3.1	5,178	80	13	47	6.1	5,568	88	13	51	6.2	5,595
800	62	7	32	2.9	5,847	80	13	47	5.7	6,260	88	13	50	5.9	6,288
850	62	7	32	2.7	6,555	80	13	46	5.4	6,993	88	13	50	5.5	7,023
900	62	7	31	2.5	7,305	80	13	46	5.1	7,766	88	13	50	5.2	7,798
1000	62	7	31	2.3	8,925	80	13	46	4.6	9,434	88	13	49	4.7	9,469
1100	62	7	31	2.1	10,496	80	13	45	4.2	11,047	88	13	49	4.3	11,085
1200	62	7	31	1.9	12,370	80	13	45	3.8	12,969	88	13	48	3.9	13,009
1300	62	7	30	1.8	14,420	80	13	45	3.5	15,066	88	13	48	3.6	15,109
1400	62	7	30	1.6	16,627	80	13	44	3.3	17,320	88	13	48	3.4	17,366
1500	62	7	30	1.5	18,991	80	13	44	3.1	19,731	88	13	47	3.1	19,781

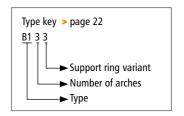
						Į.	nstallat	ion gap)						
		Lo	= 200 m	ım			L₀	= 225 m	ım			L _o	= 250 m	ım	
		Move	ment		Α		Move	ement		Α		Move	ment		Α
Ø	***			₩		*			₩		**			₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	106	20	84	68	233	121	21	93	69	255	138	28	112	74	347
65	106	20	82	62	278	121	21	91	63.4	302	138	28	109	69.1	402
80	106	20	80	56.7	317	121	21	89	58.4	343	138	28	107	64.8	448
100	106	20	79	50.7	402	121	21	87	52.4	431	138	28	105	59.5	549
125	106	20	77	44.3	498	121	21	85	46.1	530	138	28	103	53.7	659
150	106	20	76	39.1	617	121	21	84	40.9	653	138	28	101	48.6	796
175	106	20	75	34.9	734	121	21	83	36.6	773	138	28	100	44.2	928
200	106	20	74	31.4	861	121	21	82	33	903	138	28	99	40.4	1,070
250	106	20	72	26	1,164	121	21	80	27.5	1,213	138	28	97	34.2	1,405
300	106	20	71	22.1	1,492	121	21	79	23.4	1,548	138	28	95	29.5	1,764
350	106	20	70	19.2	1,717	121	21	78	20.4	1,777	138	28	94	25.9	2,008
400	106	20	69	17	2,111	121	21	77	18	2,176	138	28	93	23	2,431
450	106	20	69	15.2	2,545	121	21	76	16.1	2,617	138	28	92	20.7	2,896
500	106	20	68	13.7	3,019	121	21	75 75	14.6	3,097	138	28	91	18.8	3,400
550	106	20	67	12.5	3,534	121	21	75	13.3	3,619	138	28	90	17.2	3,946
600	106	20	67	11.5	4,090	121	21	74	12.2	4,181	138	28	89	15.8	4,532
650 700	106 106	20 20	66 66	10.6 9.9	4,686	121 121	21 21	73 73	11.3	4,783	138 138	28 28	89 88	14.7 13.7	5,158
700 750	106	20	66	9.9	5,322 5,999	121	21	73 72	10.5 9.8	5,426 6,110	138	28 28	87	13.7	5,825
800	106	20	65	9.2 8.7	6,717	121	21	72	9.0	6,834	138	28	87	12.0	6,533 7,281
850	106	20	65	8.2	7,475	121	21	72	9.2 8.7	7,598	138	28	86	11.3	8,069
900	106	20	64	7.7	8,274	121	21	72	8.2	8,404	138	28	86	10.7	8,898
1000	106	20	64	7.7	9,993	121	21	71	7.4	10,136	138	28	85	9.6	10,678
1100	106	20	63	6.3	11,652	121	21	70	6.7	11,805	138	28	84	8.8	12,390
1200	106	20	63	5.8	13,623	121	21	69	6.2	13,789	138	28	84	8.1	14,420
1300	106	20	62	5.4	15,770	121	21	69	5.7	15,769	138	28	83	7.5	16,627
1400	106	20	62	5	18,074	121	21	68	5.7	18,265	138	28	83	6.9	18,991
1500	106	20	62	4.6	20,536	121	21	68	5	20,739	138	28	82	6.5	21,512

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Angular movement only possible with guided external support ring. For larger movements see type B131 or B134.

B122

> with embedded vacuum rings

B125


> with embedded vacuum rings, with external support ring

						- 1	nstallat	ion gap)						
		Lo	= 125 m	ım			Lo	= 150 n	nm			Lo	= 175 m	ım	
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***			₩		***			\times		***			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	41	5	38	29.2	76	52	12	57	54.5	129	58	12	63	56.0	137
65	41	5	37	23.3	102	52	12	56	47.1	163	58	12	61	48.7	172
80	41	5	37	19.3	126	52	12	55	41.2	193	58	12	60	42.8	203
100	41	5	36	15.6	182	52	12	54	35.0	261	58	12	59	36.5	273
125	41	5	35	12.6	248	52	12	53	29.2	339	58	12	58	30.6	352
150	41	5	35	10.6	334	52	12	52	25.0	439	58	12	57	26.3	454
175	41	5	34	9.1	422	52	12	51	21.8	538	58	12	56	22.9	554
200	41	5	34	8.0	519	52	12	51	19.3	647	58	12	55	20.3	666
250	41	5	33	6.4	760	52	12	50	15.6	913	58	12	54	16.5	935
300	41	5	32	5.3	1,029	52	12	49	13.1	1,206	58	12	53	13.9	1,231
350	41	5	32	4.6	1,217	52	12	48	11.3	1,409	58	12	52	11.9	1,436
400	41	5	32	4.0	1,551	52	12	48	9.9	1,768	58	12	52	10.5	1,798
450	41	5	31	3.6	1,926	52	12	47	8.8	2,166	58	12	51	9.3	2,200
500	41	5	31	3.2	2,341	52	12	47	8.0	2,606	58	12	51	8.4	2,642
550	41	5	31	2.9	2,797	52	12	46	7.3	3,086	58	12	50	7.7	3,125
600	41	5	30	2.7	3,294	52	12	46	6.7	3,606	58	12	50	7.0	3,649
650	41	5	30	2.5	3,831	52	12	45	6.1	4,167	58	12	50	6.5	4,213
700	41	5	30	2.3	4,408	52	12	45	5.7	4,769	58	12	49	6.0	4,818
750	41	5	30	2.1	5,027	52	12	45	5.3	5,411	58	12	49	5.6	5,463
800	41	5	30	2.0	5,685	52	12	45	5.0	6,093	58	12	49	5.3	6,149
850	41	5	30	1.9	6,384	52	12	44	4.7	6,816	58	12	48	5.0	6,875
900	41	5	29	1.8	7,124	52	12	44	4.4	7,580	58	12	48	4.7	7,642
1000	41	5	29	1.6	8,725	52	12	44	4.0	9,229	58	12	48	4.2	9,297
1100	41	5	29	1.5	10,279	52	12	43	3.6	10,825	58	12	47	3.8	10,899
1200	41	5	29	1.3	12,135	52	12	43	3.3	12,728	58	12	47	3.5	12,808
1300	41	5	28	1.2	14,166	52	12	43	3.1	14,806	58	12	47	3.3	14,892
1400	41	5	28	1.1	16,354	52	12	42	2.9	17,041	58	12	46	3.0	17,134
1500	41	5	28	1.1	18,699	52	12	42	2.7	19,433	58	12	46	2.8	19,532

	Installation gap														
		I.	= 200 m	ım			I.	= 225 n	ım			I.	= 250 n	ım	
_		=0	200 II				=0	ZZJ II				=0	230 11		
		Move	ment		А		Move	ment		А		Move	ment		А
Ø	**			\times		**			\times		**			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	70	19	82	66	207	80	19	89	66	207	91	26	108	72	290
65	70	19	80	60.3	249	80	19	87	60.3	249	91	26	106	67.4	340
80	70	19	78	54.9	286	80	19	85	54.9	286	91	26	104	62.9	383
100	70	19	77	48.7	367	80	19	84	48.7	367	91	26	102	57.3	476
125	70	19	75	42.4	459	80	19	82	42.4	459	91	26	100	51.3	580
150	70	19	74	37.2	574	80	19	81	37.2	574	91	26	98	46.1	708
175	70	19	73	33.1	687	80	19	79	33.1	687	91	26	97	41.7	833
200	70	19	72	29.7	810	80	19	79	29.7	810	91	26	95	38	968
250	70	19	71	24.5	1,104	80	19	77	24.5	1,104	91	26	94	32	1,288
300	70	19	69	20.8	1,425	80	19	76	20.8	1,425	91	26	92	27.5	1,632
350	70	19	69	18	1,645	80	19	75	18	1,645	91	26	91	24	1,867
400	70	19	68	15.9	2,030	80	19	74	15.9	2,030	91	26	90	21.3	2,277
450	70	19	67	14.2	2,456	80	19	73	14.2	2,456	91	26	89	19.1	2,727
500	70	19	66	12.8	2,922	80	19	72	12.8	2,922	91	26	88	17.3	3,217
550	70	19	66	11.7	3,429	80	19	72	11.7	3,429	91	26	87	15.8	3,748
600	70	19	65	10.8	3,977	80	19	71	10.8	3,977	91	26	86	14.6	4,319
650	70	19	65	9.9	4,565	80	19	71	9.9	4,565	91	26	86	13.5	4,931
700	70	19	64	9.2	5,194	80	19	70	9.2	5,194	91	26	85	12.6	5,584
750	70	19	64	8.6	5,863	80	19	70	8.6	5,863	91	26	85	11.7	6,277
800	70	19	64	8.1	6,573	80	19	69	8.1	6,573	91	26	84	11	7,011
850	70	19	63	7.6	7,323	80	19	69	7.6	7,323	91	26	84	10.4	7,785
900	70	19	63	7.2	8,114	80	19	68	7.2	8,114	91	26	83	9.8	8,600
1000	70	19	62	6.5	9,817	80	19	68	6.5	9,817	91	26	82	8.9	10,351
1100	70	19	62	5.9	11,461	80	19	67	5.9	11,461	91	26	82	8.1	12,037
1200	70	19	61	5.4	13,417	80	19	67	5.4	13,417	91	26	81	7.4	14,040
1300	70	19	61	5	15,548	80	19	66	5	15,548	91	26	81	6.8	16,218
1400	70	19	60	4.7	17,837	80	19	66	4.7	17,837	91	26	80	6.4	18,554
1500	70	19	60	4.3	20,283	80	19	65	4.3	20,283	91	26	79	5.9	21,047

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: axial compression: -0 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Angular movement only possible with guided external support ring. For larger movements see type B132 or B135.

- > Type B130 B140 B150 without vacuum rings
- > Type B131 B141 B151 with internal vacuum rings
- > Type B132 B142 B152 with embedded vacuum rings
- > Type B133 B143 B153 without vacuum rings, with external support rings
- > Type B134 B144 B154 with internal vacuum rings, with external support rings
- > Type B135 B145 B155 with embedded vacuum rings, with external support rings

Universal expansion joint with three or more arches

Design: Streamlined, triple or multiple wide arch slip-on sleeve type rubber bellows, designed to compen-

sate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and fixing clamps. Optional with vacuum rings and/or external support rings. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87. Available in split-wrap or custom offset arrangements.

Diameters: \emptyset 50 to 5,000 mm, custom diameters possible

Length: = Installation gap + 2x fixing width

Installation gaps $L_0=600$ mm with 3 arches, type B130 Installation gaps $L_0=800$ mm with 4 arches, type B140 Installation gaps $L_0=1,000$ mm with 5 arches, type B150

(> page 191–193) Custom length on request

Fixing width: At least 40 mm

Depends on pressure, diameter and clamp type

Pressure: Up to 6 bar depending on diameter and length

Vacuum not allowed without vacuum rings, with vacuum rings

up to 0.05 bar absolute

Movement: For very large axial, lateral and angular movements

For axial extension or vacuum, the expansion joint can slip of the pipeline (groove as needed at the pipeline end)

+ t t (> page 191–193)

Application:

Power plants, plant construction, food processing, wastewater treatment plants, industrial facilities, e.g. to disconnect pipelines, on oscillating conveyor systems, on sieving machines

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application					
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds					
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds					
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds					
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs					
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs					
EPDMbeige	Polyamid		-40 +100	Foodstuffs					
EPDMbeige	Aramid		-40 +100	Foodstuffs					
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases					
IIR	Aramid		-20 +100	Hot water, acids, bases, gases					
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals					
CSM	Aramid		-20 +100	Strong acids, bases, chemicals					
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air					
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air					
NBRbeige	Polyamid		-30 +100	Oil, fatty foods					
NBRbeige	Aramid		-30 +100	Oil, fatty foods					
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater					
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater					
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates					
FPMbeige	Aramid		-20 +180	Oil, fatty foods					
NR	Polyamid		-20 +70	Abrasive materials					
Silicon Aramid Glass -60 +200 Air, saltwater atmosphere, foodstuffs, medical technology									

Clamps

Design: Depending on pressure and the diameter, endless clamp belt, screw thread belt, small

clamps or hinge bolt clamps. At higher pressures, 2 parallel clamps per side

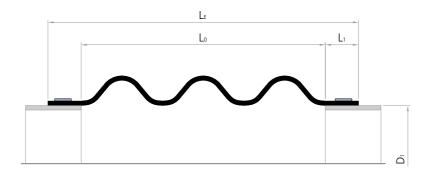
Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm Hinge bolt clamp: depending on Ø: 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300
Screw thread belt with threaded screw lugs: 1.4310

Small clamp, belt and housing: 1.4016 (Screw steel galvanised)


Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

1.4016 (Screw steel galvanised)

Support rings

TYPE	Support rings	Vacuum ring	Support ring	Pressure	Movement
B130 B140 B150		None	None	Low pressure, vacuum stability on request	> page 191
B131 B141 B151		Medium contact, inside the arch	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 192
B132 B142 B152		No medium contact, embedded in the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 193
B133 B143 B153		None	External between the arches	Depending on the diameter up to 6 bar, slight vacuum	> page 191
B134 B144 B154		Medium contact, inside the arch	External between the arches	Depending on the diameter up to 6 bar, for vacuum up to 0.05 bar absolute	> page 192
B135 B145 B155		No medium contact, embedded in the arches	External between the arches	Depending on the diameter up to 6 bar, for vacuum up to 0.05 bar absolute	> page 193
Materials	5				
Stainless	steel	Carbon steel, rubberised	Cark	oon steel, embedded	

Cross section B130

B130 B140 B150

> without vacuum rings

B133 B143 B153

> without vacuum rings, with external support rings

	Installation gap														
		$L_0 = 600$	mm – B1	I30 B133			$L_0 = 800$	mm – B	140 B143		ı	_0 = 1000) mm – B	150 B153	
		,					,								
		Move	ment		Α		Move	ment		А	Movement				Α
Ø	***			\times		***	₹		\times		***	₹		\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	159	92	126	74.8	233	212	123	168	78.5	233	265	154	210	80.8	233
65	159	92	123	70.5	278	212	123	164	75.2	278	265	154	205	78.1	278
80	159	92	121	66.5	317	212	123	161	72.0	317	265	154	201	75.4	317
100	159	92	118	61.5	402	212 212	123	158	67.9	402	265	154	197	72.0	402
125		159 92 116 55.8 49 159 92 114 50.8 61					123	154	63.1	498	265	154	193	67.9	498
150		159 92 114 50.8 61 ¹					123	152	58.6	617	265	154	190	64.0	617
175	159	92	112	46.4	734	212	123	150	54.6	734	265	154	187	60.4	734
200	159	92	111	42.6	861	212	123	148	50.9	861	265	154	185	57.0	861
250	159	92	109	36.4	1,164	212	123	145	44.5	1,164	265	154	181	50.9	1,164
300	159	92	107	31.5	1,492	212	123	143	39.4	1,492	265	154	178	45.8	1,492
350	159	92	105	27.7	1,717	212	123	141	35.1	1,717	265	154	176	41.3	1,717
400	159	92	104	24.7	2,111	212	123	139	31.6	2,111	265	154	174	37.6	2,111
450	159	92	103	22.2	2,545	212	123	137	28.7	2,545	265	154	172	34.4	2,545
500	159	92	102	20.2	3,019	212	123	136	26.2	3,019	265	154	170	31.6	3,019
550	159	92	101	18.5	3,534	212	123	135	24.1	3,534	265	154	169	29.2	3,534
600	159	92	100	17.0	4,090	212	123	134	22.3	4,090	265	154	167	27.2	4,090
650	159	92	100	15.8	4,686	212	123	133	20.7	4,686	265	154	166	25.4	4,686
700	159	92	99	14.7	5,322	212	123	132	19.4	5,322	265	154	165	23.7	5,322
750	159	92	98	13.8	5,999	212	123	131	18.2	5,999	265	154	164	22.3	5,999
800	159	92	98	13.0	6,717	212	123	130	17.1	6,717	265	154	163	21.1	6,717
850	159	92	97	12.2	7,475	212	123	130	16.1	7,475	265	154	162	19.9	7,475
900	159	92	97	11.6	8,274	212	123	129	15.3	8,274	265	154	161	18.9	8,274
1000	159	92	96	10.4	9,993	212	123	128	13.8	9,993	265	154	160	17.1	9,993
1100	159	92	95	9.5	11,652	212	123	127	12.6	11,652	265	154	158	15.6	11,652
1200	159	92	94	8.7	13,623	212	123	126	11.6	13,623	265	154	157	14.4	13,623
1300	159	92	94	8.1	15,770	212	123	125	10.7	15,770	265	154	156	13.3	15,770
1400	159	92	93	7.5	18,074	212	123	124	10.0	18,074	265	154	155	12.4	18,074
1500	159	92	92	7.0	20,536	212	123	123	9.3	20,536	265	154	154	11.6	20,536

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -66 %; lateral displacement: -50 %; angular movement: -66 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Angular movement only possible with guided external support ring. Larger movements on request.

B131 B141 B151

> with internal vacuum rings

B134 B144 B154

> with internal vacuum rings, with external support rings

Installation gap															
		$L_0 = 600$	mm – B1	I31 B134			$L_0 = 800$	mm – B1	I41 B144		I	$L_0 = 1000$) mm – B	151 B154	ı.
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***			₩		***			₩		***				
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	159	30	126	74.8	233	212	41	168	78.5	233	265	51	210	80.8	233
65 80	159 159	30 30	123 121	70.5 66.5	278 317	212 212	41 41	164 161	75.2 72.0	278 317	265 265	51 51	205 201	78.1 75.4	278 317
100	159	30	118	61.5	402	212	41	158	67.9	402	265	51 51	197	73.4	402
125	159	30	116	55.8	498	212	41	154	63.1	498	265	51	193	67.9	498
150	159	30	114	50.8	617	212	41	152	58.6	617	265	51	190	64.0	617
175	159	30	112	46.4	734	212	41	150	54.6	734	265	51	187	60.4	734
200	159	30	111	42.6	861	212	41	148	50.9	861	265	51	185	57.0	861
250	159	30	109	36.4	1,164	212	41	145	44.5	1,164	265	51	181	50.9	1,164
300	159	30	107	31.5	1,492	212	41	143	39.4	1,492	265	51	178	45.8	1,492
350	159	30	105	27.7	1,717	212	41	141	35.1	1,717	265	51	176	41.3	1,717
400	159	30	104	24.7	2,111	212	41	139	31.6	2,111	265	51	174	37.6	2,111
450	159	30	103	22.2	2,545	212	41	137	28.7	2,545	265	51	172	34.4	2,545
500	159	30	102	20.2	3,019	212	41	136	26.2	3,019	265	51	170	31.6	3,019
550	159	30	101	18.5	3,534	212	41	135	24.1	3,534	265	51	169	29.2	3,534
600	159	30	100	17.0	4,090	212	41	134	22.3	4,090	265	51	167	27.2	4,090
650	159	30	100	15.8	4,686	212	41	133	20.7	4,686	265	51	166	25.4	4,686
700	159	30	99	14.7	5,322	212	41	132	19.4	5,322	265	51	165	23.7	5,322
750	159	30	98	13.8	5,999	212	41	131	18.2	5,999	265	51	164	22.3	5,999
800	159	30	98	13.0	6,717	212	41	130	17.1	6,717	265	51	163	21.1	6,717
850	159	30	97	12.2	7,475	212	41	130	16.1	7,475	265	51	162	19.9	7,475
900	159	30	97	11.6	8,274	212	41	129	15.3	8,274	265	51	161	18.9	8,274
1000	159	30	96	10.4	9,993	212	41	128	13.8	9,993	265	51	160	17.1	9,993
1100	159	30	95	9.5	11,652	212	41	127	12.6	11,652	265	51	158	15.6	11,652
1200	159	30	94	8.7	13,623	212	41	126	11.6	13,623	265	51	157	14.4	13,623
1300	159	30	94	8.1	15,770	212	41	125	10.7	15,770	265	51	156	13.3	15,770
1400 1500	159 159	30 30	93 92	7.5 7.0	18,074	212 212	41 41	124 123	10.0 9.3	18,074	265 265	51 51	155 154	12.4 11.6	18,074
1500	159	30	92	7.0	20,536	212	41	123	9.3	20,536	205	וכ	154	11.0	20,536

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: axial compression: -33 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Angular movement only possible with guided external support ring. Larger movements on request.

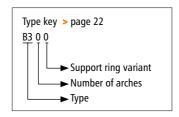
Sleeve type rubber bellow with built in off-set

B132 B142 B152

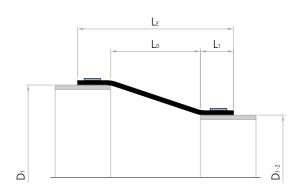
> with embedded vacuum rings

B135 B145 B155

> with embedded vacuum rings, with external support rings


Installation gap															
		$L_0 = 600$	mm – B1	132 B135			$L_0 = 800$	mm – B1	142 B145			$L_0 = 1000$) mm – B	152 B155	j
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***			₩		***			₩		***		\bigcirc	\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
50	105	28	123	73.8	207	140	38	164	77.7	207	175	47	204	80.1	207
65	105	28	120	69.3	249	140	38	160	74.2	249	175	47	200	77.2	249
80	105	28	118	65.1	286	140	38	157	70.8	286	175	47	196	74.4	286
100	105	28	115	59.8	367	140	38	154	66.5	367	175	47	192	70.7	367
125	105	28	113	54.0	459	140	38	150	61.5	459	175	47	188	66.4	459
150	105	28	111	48.9	574	140	38	148	56.9	574	175	47	185	62.3	574
175	105	28	109	44.5	687	140	38	146	52.7	687	175	47	182	58.5	687
200	105	28	108	40.7	810	140	38	144	49.0	810	175	47	180	55.0	810
250	105	28	106	34.5	1,104	140	38	141	42.6	1,104	175	47	177	48.8	1,104
300	105	28	104	29.8	1,425	140	38	139	37.5	1,425	175	47	174	43.6	1,425
350	105	28	103	26.2	1,645	140	38	137	33.3	1,645	175	47	171	39.3	1,645
400	105	28	102	23.3	2,030	140	38	135	29.9	2,030	175	47	169	35.6	2,030
450	105	28	100	20.9	2,456	140	38	134	27.1	2,456	175	47	167	32.4	2,456
500	105	28	99	19.0	2,922	140	38	133	24.7	2,922	175	47	166	29.8	2,922
550	105	28	99	17.4	3,429	140	38	132	22.7	3,429	175	47	164	27.5	3,429
600	105	28	98	16.0	3,977	140	38	130	21.0	3,977	175	47	163	25.5	3,977
650	105	28	97	14.8	4,565	140	38	130	19.5	4,565	175	47	162	23.7	4,565
700	105	28	96	13.8	5,194	140	38	129	18.2	5,194	175	47	161	22.2	5,194
750	105	28	96	12.9	5,863	140	38	128	17.0	5,863	175	47	160	20.9	5,863
800	105	28	95	12.1	6,573	140	38	127	16.0	6,573	175	47	159	19.7	6,573
850	105	28	95	11.4	7,323	140	38	126	15.1	7,323	175	47	158	18.6	7,323
900	105	28	94	10.8	8,114	140	38	126	14.3	8,114	175	47	157	17.6	8,114
1000	105	28	93	9.8	9,817	140	38	125	13.0	9,817	175	47	156	16.0	9,817
1100	105	28	93	8.9	11,461	140	38	123	11.8	11,461	175	47	154	14.6	11,461
1200	105	28	92	8.2	13,417	140	38	123	10.9	13,417	175	47	153	13.4	13,417
1300	105	28	91	7.5	15,548	140	38	122	10.0	15,548	175	47	152	12.4	15,548
1400	105	28	91	7.0	17,837	140	38	121	9.3	17,837	175	47	151	11.5	17,837
1500	105	28	90	6.5	20,283	140	38	120	8.7	20,283	175	47	150	10.8	20,283

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: axial compression: -0 %; axial extension: -0 %; lateral displacement: -50 %; angular movement: -0 %. In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Angular movement only possible with guided external support ring. Larger movements on request.


B300 Ø 50 - 5,000 mm

> Type B300

Cross section B300

Concentric or eccentric reducing expansion joint

Design: Streamlined, concentric or eccentric reducer slip-on sleeve type rubber

bellows, designed to compensate all directional movements, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and fixing clamps. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM

F1123 - 87. Available in split-wrap or custom offset arrangements. \varnothing 50 to 5,000 mm, custom diameters and combinations possible

Length: = Installation gap + 2x fixing width

 $L_0 = 75$ to 2,100 mm (standard installation gaps) (> page 196)

Custom length on request

Fixing width: At least 40 mm

Diameters:

Depends on pressure, diameter and clamp type

Pressure: Up to 1 bar depending on diameter and length

Vacuum stability on request

Movement: For low axial compression and lateral movements

For vacuums, the expansion joint can slip of the pipeline (groove as

needed at the pipeline end)

→ ‡ (> page 196)

Application:

Power plants, plant construction, food processing, wastewater treatment plants, industrial facilities, e.g. to disconnect pipelines, on oscillating conveyor systems, on sieving machines

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Clamps

Design: Depending on pressure and diameters, endless clamp belt, screw thread belt, small clamps or

hinge bolt clamps. At higher pressures, 2 parallel clamps per side

Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm Hinge bolt clamp: depending on Ø: 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310

Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Poten	tial combir	nation	Movement						
Ø	Ø	Gap	-M-	*	Ϋ́				
D ₁	D ₁₋₂	-	, M.	\sim	\sim 4				
mm	80	mm 60	mm 1	mm 0	±mm 2				
100	80	135	2	0	4				
125	100	75	1	0	2				
	80	210	3	0	6				
150	100	150	2	0	4				
	125 80	75 360	6	0	2 10				
	100	300	5	0	8				
200	125	225	4	0	6				
	150	150	2	0	4				
	80 100	510 450	8 7	0	13 11				
250	125	375	6	0	9				
	150	300	5	0	8				
	200	150	3	0	4				
	80	660	11	0	16				
	100 125	600 525	10 9	0	14 13				
300	150	450	8	0	11				
	200	300	5	0	7				
	250	150	3	0	4				
	80 100	810 750	14 13	0	19 17				
	125	675	12	0	16				
350	150	600	10	0	14				
	200	450	8	0	10				
	250	300	5 3	0	7 3				
	300 100	150 900	16	0	20				
	125	825	15	0	18				
	150	750	13	0	17				
400	200	600	11	0	13				
	250 300	450 300	8 6	0	10 7				
	350	150	3	0	3				
	150	1050	19	0	22				
	200	900	17	0	19				
500	250 300	750 600	14 12	0	16 13				
	350	450	9	0	10				
	400	300	6	0	6				
	450	150	3	0	3				
	200 250	1200 1050	23 21	0	24 21				
	300	900	18	0	18				
600	350	750	15	0	15				
	400	600 450	12	0	12 0				
	450 500	450 300	9	0	9 6				
	250	1350	27	0	26				
	300	1200	25	0	23				
700	350	1050	22	0	20				
700	400 450	900 750	19 16	0	17 15				
	500	600	13	0	12				
	600	300	7	0	6				
	300	1500	32	0	28				
	350 400	1350 1200	29 26	0	25 23				
800	450	1050	23	0	20				
	500	900	20	0	17				
	600	600	13	0	11				
	700	300	7	0	6				

Poten	tial combir	nation		Movement	
Ø			.М.	\sim	M
D ₁	$ \emptyset $ $ \mathbf{D}_{_{1-2}} $	Gap			₹.*
mm		mm	mm	mm	±mm
	350	1650	36	0	30
	400 450	1500 1350	33 30	0	27 25
900	500	1200	27	0	22
300	600	900	21	0	16
	700	600	14	0	11
	800	300	7	0	5
	400	1800	40	0	32
	450	1650	37	0	29
1000	500 600	1500 1200	34 28	0	27 21
1000	700	900	21	0	16
	800	600	14	0	11
	900	300	7	0	5
	450	1950	45	0	34
	500	1800	42	0	31
1100	600 700	1500 1200	36 29	0	26 21
1100	800	900	29	0	16
	900	600	15	0	10
	1000	300	8	0	5
	500	2100	50	0	36
	600	1800	43	0	31
	700	1500	37	0	25
1200	800	1200	30	0	20
	900 1000	900 600	23 15	0	15 10
	1100	300	8	0	5
	600	2100	52	0	35
	700	1800	45	0	30
	800	1500	38	0	25
1300	900	1200	31 23	0	20
	1000 1100	900 600	16	0	15 10
	1200	300	8	0	5
	700	2100	53	0	34
	800	1800	46	0	29
4	900	1500	39	0	25
1400	1000	1200	32	0	20 15
	1100 1200	900 600	24 16	0	10
	1300	300	8	0	5
	800	2100	55	0	34
	900	1800	47	0	29
4500	1000	1500	40	0	24
1500	1100 1200	1200 900	32 25	0	19 1 <i>4</i>
	1300	600	25 17	0	14 10
	1400	300	8	0	5
	900	2100	56	0	33
	1000	1800	49	0	28
	1100	1500	41	0	24
1600	1200	1200	33	0	19
	1300 1400	900 600	25 17	0	14 9
	1500	300	9	0	5
		-			

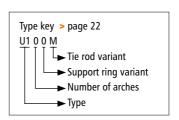
The specified movements may vary depending on the design pressure.

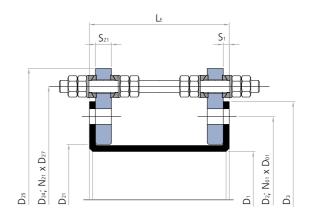
Concentric reducing expansion joint with zipper for maintenance service

Flexible silicone rubber reducer for large axial and lateral displacements

Lateral expansion joints with full faced rubber flange

Cylindrical Expansion Joints without Arch


	U100	Lateral expansion joint without arch	> 200									
	Single Arch	Expansion Joints										
	U110	Lateral expansion joint with one arch	> 206									
	U216	Lateral expansion joint with one arch	> 218									
	U110 LDJ	Lateral dismantling joint	> 222									
\j^\\\	U110M IPB	In-line pressure balanced expansion joint	> 226									
	U110M EPB	Elbow pressure balanced expansion joint	> 232									
THE REP.	Double Arch	Expansion Joints										
	U120	Lateral expansion joint with two arches	> 236									


U100... (Tie rod B/E/C/M/R/K/L) ø 80 - 4,000 mm

> Type U100M

Cross section U100M

Lateral expansion joint without arch

Design: Streamlined, cylindrical rubber bellows with full faced rubber

flanges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single- or multi-part backing flanges with tierods borne in spherical washers. Optional with embedded support rings. In compliance with PED 2014/68/EU, FSA Technical Hand-

book and ASTM F1123 - 87.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 204–205)

Custom length on request

Pressure: Up to 16 bar depending on diameter and length

Vacuum stability on request

Movement: For low lateral movements*

\$ (> page 204–205)

Application:
Plant construction,
sand/gravel extraction
industry, dredgers,
food processing e.g. as
suction/pressure hoses,

in conveying lines, on pumps and vessels

Request assembly instructions at: www.ditec-adam.de/

^{*}Installation gap tolerances according to axial movement capability of the expansion joint

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part integral backing flanges with clearance holes and tie rod holders

(tie rod type B, E, C, M)

Single- or multi-part backing flanges with clearance holes and tie rod gusset plates

(tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

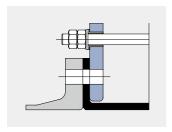
Telescoping flow liner (> page 57)

Tie rods

Design: Dimensioning according to design

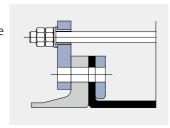
pressure (test pressure) based on the Pressure Equipment Directive

Materials: Carbon steel

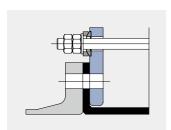

Stainless steel

Coating: Spherical washers/ball disks:

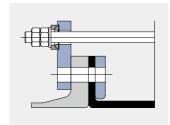
PTFE coated


Tie rods: galvanised, hot-dip galvanised or PTFE-coated

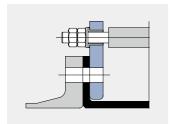
Example: Type U100M


Type U100B

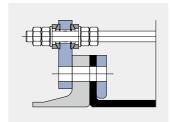
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U100R

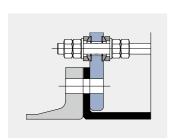
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U100E

Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U100K

Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U100C

Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure thrust forces

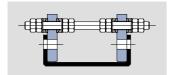
Type U100L

Gusset plates: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces



Type U100M

Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces

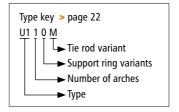


Large bore lateral rubber expansion joint, type U110M GRP pipe \varnothing 3,600 mm of a utility plant work-shop hydraulic test at 13 bar

U100^{*****} (Tie rod B/E/C/M/R/K/L) > without arch

Installation length ($L_{\!\scriptscriptstyle E}$) at design pressure															
		up to 10	bar $L_E =$	150 mm					200 mm			up to 10	bar $L_E =$	250 mm	
				_			<u> </u>		n request					_	
\sim	Lol	Move	ement	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	Move	ement	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	Move	ement	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A
Ø	₩			**		***		1	**		₩			**	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
100 125	8	5 5	10 10	0	79 123	10 10	6 6	13 13	0	79 123	13 13	8	17 16	0	79 123
150	8	5	9	0	177	10	6	12	0	177	13	8	15	0	177
175	8	5	9	0	254	10	6	12	0	254	13	8	15	0	254
200	8	5 5	9	0	314	10	6	12	0	314	13	8	14	0	314
250 300	8	5	8	0	491 716	10 10	6 6	11 11	0	491 716	13 13	8	14 13	0	491 716
350	8	5	8	0	990	10	6	10	0	990	13	8	13	0	990
400	8	5	8	0	1,269	10	6	10	0	1,269	13	8	13	0	1,269
450	8	5 5	7 7	0	1,612	10	6 6	10	0	1,612	13	8	12	0	1,612
500 550	8	5	7	0	1,987 2,376	10 10	6	10 9	0	1,987 2,376	13 13	8	12 12	0	1,987 2,376
600	8	5	7	0	2,856	10	6	9	0	2,856	13	8	12	0	2,856
650	8	5	7	0	3,318	10	6	9	0	3,318	13	8	11	0	3,318
700	8	5 5	7 7	0	3,893	10	6 6	9 9	0	3,893	13	8	11	0	3,893
750 800	8	5	7	0	4,418 5,090	10 10	6	9	0	4,418 5,090	13 13	8	11 11	0	4,418 5,090
850	8	5	6	0	5,675	10	6	9	0	5,675	13	8	11	0	5,675
900	8	5	6	0	6,433	10	6	9	0	6,433	13	8	11	0	6,433
950	8	5 5	6	0	7,088	10	6 6	8	0	7,088	13	8	11	0	7,088
1000 1050	8	5	6	0	7,933 8,659	10 10	6	8	0	7,933 8,659	13 13	8	10 10	0	7,933 8,659
1100	8	5	6	0	9,607	10	6	8	0	9,607	13	8	10	0	9,607
1150	8	5	6	0	10,387	10	6	8	0	10,387	13	8	10	0	10,387
1200	8	5 5	6	0	11,404	10	6 6	8	0	11,404	13	8	10	0	11,404
1250 1300	8	5	6 6	0	12,272 13,376	10 10	6	8	0	12,272 13,376	13 13	8	10 10	0	12,272 13,376
1350	8	5	6	0	14,314	10	6	8	0	14,314	13	8	10	0	14,314
1400	8	5	6	0	15,504	10	6	8	0	15,504	13	8	10	0	15,504
1450 1500	8	5 5	6 6	0	16,513 17,789	10 10	6 6	8	0	16,513 17,789	13 13	8	10 10	0	16,513 17,789
1600	8	5 5	6	0	20,232	10	6	8	0	20,232	13	8	10	0	20,232
1650	8	5	6	0	21,382	10	6	8	0	21,382	13	8	9	0	21,382
1700	8	5	6	0	22,832	10	6	8	0	22,832	13	8	9	0	22,832
1800 1900	8	5 5	6 6	0	25,617 28,502	10 10	6 6	7 7	0	25,617 28,502	13 13	8	9 9	0	25,617 28,502
1950	8	5	5	0	29,865	10	6	7	0	29,865	13	8	9	0	29,865
2000	8	5	5	0	31,573	10	6	7	0	31,573	13	8	9	0	31,573
2100	8	5	5	0	34,801	10	6	7	0	34,801	13	8	9	0	34,801
2200 2250	8	5 5	5 5	0	38,186 39,761	10 10	6 6	7 7	0	38,186 39,761	13 13	8	9 9	0	38,186 39,761
2300	8	5	5	0	41,728	10	6	7	0	41,728	13	8	9	0	41,728
2400	8	5	5	0	45,428	10	6	7	0	45,428	13	8	9	0	45,428
2500	8	5	5	0	49,284	10	6	7	0	49,284	13	8	9	0	49,284
2550 2600	8	5 5	5 5	0	51,071 53,297	10 10	6 6	7 7	0	51,071 53,297	13 13	8	9 9	0	51,071 53,297
2700	8	5	5	0	57,468	10	6	7	0	57,468	13	8	9	0	57,468
2800	8	5	5	0	61,795	10	6	7	0	61,795	13	8	9	0	61,795
2850	8	5	5	0	63,794	10	6	7	0	63,794	13	8	8	0	63,794
2900 3000	8	5 5	5 5	0	66,280 70,922	10 10	6 6	7 7	0	66,280 70,922	13 13	8	8 8	0	66,280 70,922
3100	8	5	5	0	75,720	10	6	7	0	75,720	13	8	8	0	75,720
3150	8	5	5	0	77,931	10	6	7	0	77,931	13	8	8	0	77,931
3200	8	5	5	0	80,676	10	6	7	0	80,676	13	8	8	0	80,676
3300 3400	8	5 5	5 5	0	85,789 91,059	10 10	6 6	7 7	0	85,789 91,059	13 13	8	8 8	0	85,789 91,059
3450	8	5	5	0	93,482	10	6	7	0	93,482	13	8	8	0	93,482
3600	8	5	5	0	102,071	10	6	6	0	102,071	13	8	8	0	102,071
3800	8 8	5	5	0	113,710	10	6	6	0	113,710	13	8 g	8	0	113,710
4000	8	5	5	0	125,978	10	6	6	0	125,978	13	8	8	0	125,978

U100... (Tie rod B/E/C/M/R/K/L) > without arch


Installation length ($L_{\scriptscriptstyle E}$) at design pressure															
	up to 10	bar L _E =	300 mm					350 mm			up to 10	bar L _E =	400 mm		
	Move	ment				nigner pr Move		n request			Move	ment			
М	\frac{1}{2}	1	₩	A L	М	\frac{1}{2}	h.	L	A	М	M000		12Y	A 	Ø
* mm	mm	±mm	₩ ±°	cm ²	™mm	mm	±mm	₩ ±°	cm ²	* Mm	mm	±mm	₩ ±°	cm ²	mm
15	9	20	0	79	18	11	23	0	79	20	12	27	0	79	100
15 15	9 9	19 18	0	123	18 18	11	22	0	123 177	20	12 12	25	0	123	125 150
15	9	18	0	177 254	18	11 11	21 21	0	254	20 20	12	24 24	0	177 254	175
15	9	17	0	314	18	11	20	0	314	20	12	23	0	314	200
15 15	9 9	17	0	491 716	18 18	11 11	19 19	0	491 716	20	12 12	22 21	0	491	250 300
15	9	16 15	0	990	18	11	18	0	990	20	12	21	0	716 990	350 350
15	9	15	0	1,269	18	11	18	0	1,269	20	12	20	0	1,269	400
15	9	15	0	1,612	18	11	17	0	1,612	20	12	20	0	1,612	450
15 15	9 9	14 14	0	1,987 2,376	18 18	11 11	17 17	0	1,987 2,376	20 20	12 12	19 19	0	1,987 2,376	500 550
15	9	14	0	2,856	18	11	16	0	2,856	20	12	19	0	2,856	600
15	9	14	0	3,318	18	11	16	0	3,318	20	12	18	0	3,318	650
15 15	9	13 13	0	3,893 4,418	18 18	11 11	16 16	0	3,893 4,418	20 20	12 12	18 18	0	3,893 4,418	700 750
15	9	13	0	5,090	18	11	15	0	5,090	20	12	18	0	5,090	800
15	9	13	0	5,675	18	11	15	0	5,675	20	12	17	0	5,675	850
15	9	13	0	6,433	18	11	15	0	6,433	20	12	17	0	6,433	900
15 15	9 9	13 13	0	7,088 7,933	18 18	11 11	15 15	0	7,088 7,933	20 20	12 12	17 17	0	7,088 7,933	950 1000
15	9	12	0	8,659	18	11	15	0	8,659	20	12	17	0	8,659	1050
15	9	12	0	9,607	18	11	14	0	9,607	20	12	16	0	9,607	1100
15 15	9 9	12 12	0	10,387 11,404	18 18	11 11	14 14	0	10,387 11,404	20	12 12	16 16	0	10,387 11,404	1150 1200
15	9	12	0	12,272	18	11	14	0	12,272	20	12	16	0	12,272	1250
15	9	12	0	13,376	18	11	14	0	13,376	20	12	16	0	13,376	1300
15 15	9 9	12 12	0	14,314 15,504	18 18	11 11	14 14	0	14,314	20	12 12	16 16	0	14,314 15,504	1350 1400
15	9	12	0	16,513	18	11	14	0	15,504 16,513	20	12	16	0	16,513	1450
15	9	12	0	17,789	18	11	14	0	17,789	20	12	15	0	17,789	1500
15	9	11	0	20,232	18	11	13	0	20,232	20	12	15	0	20,232	1600
15 15	9	11 11	0	21,382 22,832	18 18	11 11	13 13	0	21,382 22,832	20	12 12	15 15	0	21,382 22,832	1650 1700
15	9	11	0	25,617	18	11	13	0	25,617	20	12	15	0	25,617	1800
15	9	11	0	28,502	18	11	13	0	28,502	20	12	15	0	28,502	1900
15 15	9	11 11	0	29,865 31,573	18 18	11 11	13 13	0	29,865 31,573	20 20	12 12	15 15	0	29,865 31,573	1950 2000
15	9	11	0	34,801	18	11	13	0	34,801	20	12	14	0	34,801	2100
15	9	11	0	38,186	18	11	13	0	38,186	20	12	14	0	38,186	2200
15	9	11	0	39,761	18	11	12	0	39,761	20	12	14	0	39,761	2250
15 15	9 9	11 11	0	41,728 45,428	18 18	11 11	12 12	0	41,728 45,428	20	12 12	14 14	0	41,728 45,428	2300 2400
15	9	10	0	49,284	18	11	12	0	49,284	20	12	14	0	49,284	2500
15	9	10	0	51,071	18	11	12	0	51,071	20	12	14	0	51,071	2550
15 15	9	10 10	0	53,297 57,468	18 18	11 11	12 12	0	53,297 57,468	20	12 12	14 14	0	53,297 57,468	2600 2700
15	9	10	0	61,795	18	11	12	0	61,795	20	12	14	0	61,795	2800
15	9	10	0	63,794	18	11	12	0	63,794	20	12	14	0	63,794	2850
15	9	10	0	66,280	18	11	12	0	66,280	20	12	14	0	66,280	2900
15 15	9 9	10 10	0	70,922 75,720	18 18	11 11	12 12	0	70,922 75,720	20	12 12	13 13	0	70,922 75,720	3000 3100
15	9	10	0	77,931	18	11	12	0	77,931	20	12	13	0	77,931	3150
15	9	10	0	80,676	18	11	12	0	80,676	20	12	13	0	80,676	3200
15 15	9 9	10 10	0	85,789 91,059	18 18	11 11	12 11	0	85,789 91,059	20	12 12	13 13	0	85,789 91,059	3300 3400
15	9	10	0	93,482	18	11	11	0	93,482	20	12	13	0	93,482	3450
15	9	10	0	102,071	18	11	11	0	102,071	20	12	13	0	102,071	3600
15	9	10	0	113,710	18	11	11	0	113,710	20	12	13	0	113,710	3800
15	9	10	0	125,978	18	11	11	0	125,978	20	12	13	0	125,978	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

U110... (Tie rod B/E/C/M/R/K/L) ø 80 - 4,000 mm

- > Type U110... (Tie rod B/E/C/M/R/K/L) without vacuum ring
- > Type U111... (Tie rod B/E/C/M/R/K/L) with internal vacuum ring
- > Type U112... (Tie rod B/E/C/M/R/K/L) with embedded vacuum ring

Lateral expansion joint with one arch

Design: Streamlined, single wide arch rubber bellows with full faced rubber

flanges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single- or multi-part backing flanges with tie-rods borne in spherical washers. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and

ASTM F1123 - 87.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 200$ to 500 mm (> page 212–217)

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Movement: For lateral and angular (2 tie rod design) movements*

Spring rate: Lateral spring rates (> page 296)

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e. g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

^{*}Installation gap tolerances according to axial movement capability of the expansion joint

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 212–217)

Backing flanges

Design: Single- or multi-part integral backing flanges with support collar, clearance holes and tie rod

holders (tie rod type B, E, C, M)

Single- or multi-part backing flanges with support collar, clearance holes and

tie rod gusset plates (tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Primed, hot-dip galvanised, special paint Coating:

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

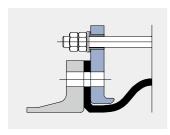
Filled arch:

Tie rods

Design: Dimensioning according to design

pressure (test pressure) based on the Pressure Equipment Directive

Materials: Carbon steel

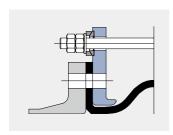

Stainless steel

Coating: Spherical washers/ball disks:

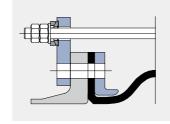
PTFE coated

Tie rods: galvanised, hot-dip galvanised or PTFE-coated

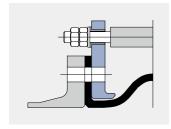
Example: Type U110M


Type U110B

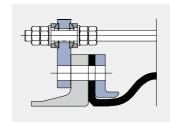
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U110R

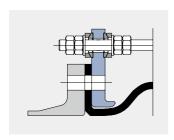
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U110E

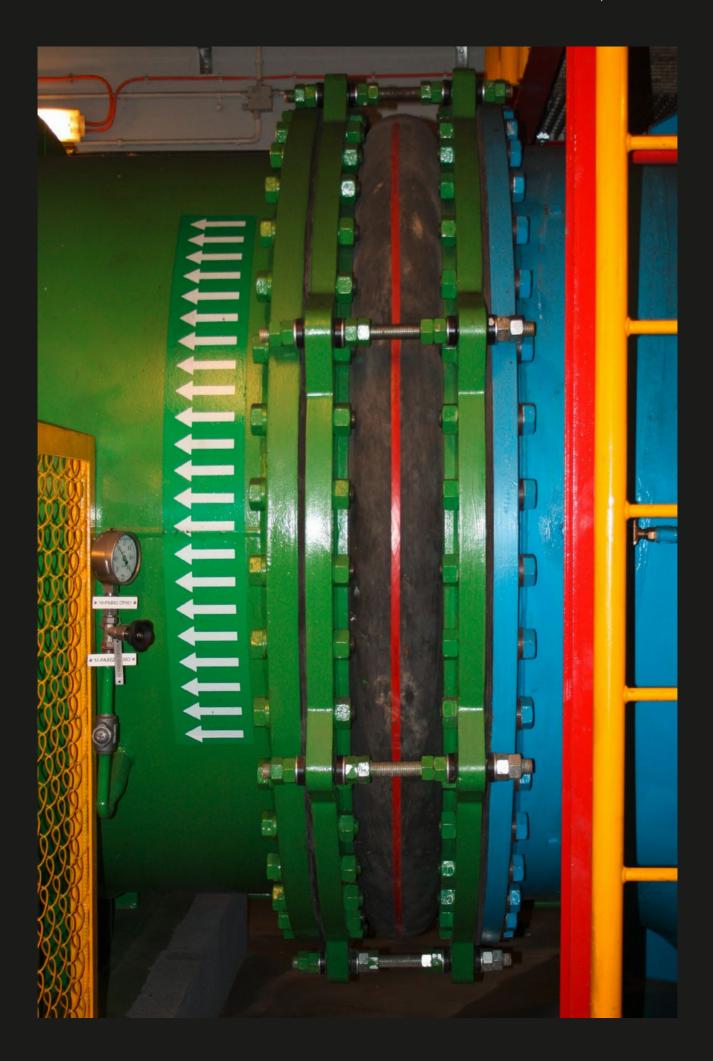
Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U110K

Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U110C

Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces


Type U110L

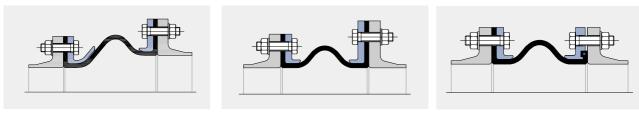
Gusset plates: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

Type U110M

Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

210 Lateral expansion joints with full faced rubber flange

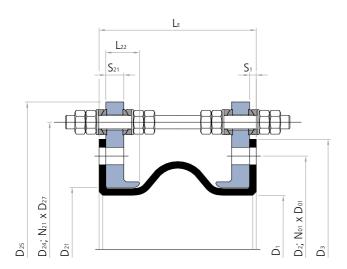
Sea water intake cooling water line \varnothing 2,600 mm, operating pressure 2.5 bar, lateral tied rubber expansion joints of type U111M

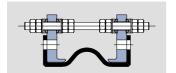

EPDM rubber expansion joint \varnothing 900 mm PN 16 designed according PED 2014/68/EU with aramid cord reinforcements, design temperature 120° C

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
U110		None	Depending on the diameter up to 100 bar, vacuum stability on request	> page 212–213
U111		Medium contact, inside the arch	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 214–215
U112		No medium contact, embedded in the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 216–217
Materials	s			
Stainless	steel	Carbon steel, rubberised	Carbon steel, emb	edded

Specials

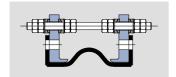



Customized reducer style

Different flange dimensions

Different end fitting

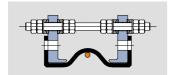
Cross section U110M



U110... (Tie rod B/E/C/M/R/K/L)

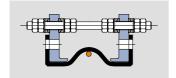
> without vacuum ring

					Install	ation le	ngth (L	_E) at de	sign pre	ssure							
			oar L _E =										oar L _E =				
				250 mm			up to 10	bar $L_E =$	300 mm		up to 10 bar L _E = 350 mm						
	Movement A						higher pressures on request Movement A					Movement A					
Ø	+	₹		\(\frac{1}{2}\)		+	₹		\(\tau_{\tau}\)		+\$}	₹		\(\frac{1}{2}\)			
mm	mm 26	mm 11	±mm	±°	cm ²	mm 31	mm 10	±mm	±°	cm ²	mm 40	mm 20	±mm 28	±°	cm ²		
100 125	26	11	17	0	241	31	10	19	0	241	40	20	28	0	330		
150 175	26 26	11 11	17 17	0	314 415	31 31	10 10	18 18	0	314 415	40 40	20 20	27 27	0	415 531		
200 250	26 26	11 11	17 16	0	491 707	31 31	10 10	18 18	0	491 707	40 40	20 20	26 26	0	616 855		
300 350	26 26	11 11	16 16	0	973 1,288	31 31	10 10	17 17	0	973 1,288	40 40	20 20	26 25	0	1,146 1,486		
400 450	26 26	11 11	16 15	0	1,605 1,987	31 31	10 10	17 17	0	1,605 1,987	40 40	20	25 25	0	1,825 2,231		
500	26	11	15	0	2,402	31	10	17	0	2,402	40	20 20	24	0	2,669		
550 600						31	10	16 16	0	2,827 3,349	40	20	24 24	0	3,117 3,664		
650 700						31 31	10 10	16 16	0	3,848 4,465	40 40	20 20	24 24	0	4,185 4,827		
750 800						31 31	10 10	16 16	0	5,027 5,741	40 40	20 20	23 23	0	5,411 6,151		
850 900						31 31	10 10	16 16	0	6,362 7,163	40 40	20 20	23 23	0	6,793 7,620		
950 1000						31 31	10 10	16 16	0	7,854 8,742	40 40	20 20	23 23	0	8,332 9,246		
1050 1100											40 40	20	23 23	0	10,029 11,047		
1150 1200											40 40	20 20	23 22	0	11,882 12,969		
1250											40	20	22	0	13,893		
1300 1350											40	20	22 22	0	15,066 16,061		
1400 1450											40 40	20 20	22 22	0	17,320 18,385		
1500 1600											40 40	20 20	22 22	0	19,731 22,299		
1650 1700											40 40	20 20	22 22	0	23,506 25,025		
1800 1900											40 40	20 20	22 22	0	27,937 30,946		
1950 2000											40 40	20	22 21	0	32,365 34,143		
2100											40	20	21	Ü	J 1, 1 +J		
2200 2250																	
2300 2400																	
2500 2550																	
2600 2700																	
2800 2850																	
2900 3000																	
3100 3150																	
3200																	
3300 3400																	
3450 3600																	
3800 4000																	


U110... (Tie rod B/E/C/M/R/K/L)

> without vacuum ring

					Install	ation le	ngth (L	_E) at de	sign pr	essure					
		_	300 mm				bar L _E =					-	400 mm		
			350 mm 400 mm				bar L _E =	400 mm 450 mm					450 mm 500 mm		
	up to 10	Dai LE —	400 11111					n request			up to 10	Dai LE -	300 mm		
	Move	ment		Α		Move	ement		Α		Move	ment		Α	
+/-		ξΉ	\rightleftharpoons	M	+/-		ξΉ	\rightleftharpoons		-1/-	*	₹\	\rightleftharpoons	M	Ø
mm [V]	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm
44	20	30	0	260	53	31	39	0	353	69	43	53	0	491	100
44 44	20 20	30 29	0	337 423	53 53	31 31	39 38	0	441 539	69 69	43 43	51 51	0	594 707	125 150
44	20	29	0	539	53	31	37	0	670	69	43	50	0	855	175
44 44	20 20	29 28	0	625 866	53 53	31 31	37 36	0	765	69 69	43 43	49 48	0	962	200 250
44	20	27	0	1,158	53	31	36	0	1,029 1,346	69	43	48	0	1,257 1,605	300
44	20	27	0	1,500	53	31	35	0	1,713	69	43	47	0	2,003	350
44 44	20 20	27 26	0	1,840 2,248	53 53	31 31	35 34	0	2,075 2,507	69 69	43 43	46 46	0	2,393 2,856	400 450
44	20	26	0	2,688	53	31	34	0	2,971	69	43	45	0	3,349	500
44 44	20 20	26 26	0	3,137 3,685	53 53	31 31	34 33	0	3,442 4,015	69 69	43 43	45 45	0	3,848 4,453	550 600
44	20	26	0	4,208	53	31	33	0	4,560	69	43	44	0	5,027	650
44	20 20	25	0	4,852	53 53	31 31	33 33	0	5,230	69	43 43	44	0	5,728	700
44	20	25 25	0	5,437 6,179	53	31	33	0	5,836 6,604	69 69	43	44 43	0	6,362 7,163	750 800
44	20	25	0	6,822	53	31	32	0	7,268	69	43	43	0	7,854	850
44 44	20 20	25 25	0	7,651 8,365	53 53	31 31	32 32	0	8,123 8,858	69 69	43 43	43 43	0	8,742 9,503	900 950
44	20	25	0	9,280	53	31	32	0	9,799	69	43	43	0	10,477	1000
44 44	20 20	25 24	0	10,064 11,085	53 53	31 31	32 32	0	10,605	69 69	43 43	42 42	0	11,310 12,390	1050 1100
44	20	24	0	11,085	53	31	32	0	11,652 12,509	69	43	42	0	13,273	1150
44	20	24	0	13,009	53	31	31	0	13,623	69	43	42	0	14,420	1200
44 44	20 20	24 24	0	13,935 15,109	53 53	31 31	31 31	0	14,569 15,770	69 69	43 43	42 42	0	15,394 16,627	1250 1300
44	20	24	0	16,106	53	31	31	0	16,787	69	43	41	0	17,671	1350
44 44	20 20	24 24	0	17,366 18,433	53 53	31 31	31 31	0	18,074 19,162	69 69	43 43	41 41	0	18,991 20,106	1400 1450
44	20	24	0	19,781	53	31	31	0	20,536	69	43	41	0	21,512	1500
44 44	20 20	24	0	22,352	53 53	31 31	31	0	23,154	69	43 43	41	0	24,190	1600
44	20	24 23	0	23,561 25,081	53	31	31 30	0	24,384 25,930	69 69	43	41 41	0	25,447 27,026	1650 1700
44	20	23	0	27,996	53	31	30	0	28,893	69	43	40	0	30,049	1800
44 44	20 20	23 23	0	31,009 32,429	53 53	31 31	30 30	0	31,952 33,394	69 69	43 43	40 40	0	33,168 34,636	1900 1950
44	20	23	0	34,209	53	31	30	0	35,199	69	43	40	0	36,474	2000
44 44	20 20	23 23	0	37,565 41,079	53 53	31 31	30 30	0	38,603 42,164	69 69	43 43	40 40	0	39,938 43,558	2100 2200
44	20	23	0	42,712	53	31	30	0	43,818	69	43	40	0	45,239	2250
44	20	23	0	44,750	53	31	30	0	45,882	69	43	40	0	47,336	2300
44 44	20 20	23 23	0	48,578 52,563	53 53	31 31	29 29	0	49,757 53,789	69 69	43 43	39 39	0	51,271 55,363	2400 2500
44	20	23	0	54,408	53	31	29	0	55,655	69	43	39	0	57,256	2550
44 44	20 20	23 23	0	56,706 61,005	53 53	31 31	29 29	0	57,979 62,325	69 69	43 43	39 39	0	59,612 64,018	2600 2700
44	20	22	0	65,461	53	31	29	0	66,829	69	43	39	0	68,581	2800
44	20	22	0	67,518	53	31	29	0	68,906	69	43	39	0	70,686	2850
44 44	20 20	22 22	0	70,075 74,845	53 53	31 31	29 29	0	71,489 76,307	69 69	43 43	39 39	0	73,301 78,179	2900 3000
44	20	22	0	79,773	53	31	29	0	81,282	69	43	38	0	83,213	3100
44 44	20 20	22 22	0	82,041 84,857	53 53	31 31	29 29	0	83,571 86,413	69 69	43 43	38 38	0	85,530 88,405	3150 3200
44	20	22	0	90,099	53	31	29	0	91,702	69	43	38	0	93,753	3300
44	20	22	0	95,498	53	31	29	0	97,148	69	43	38	0	99,259	3400
44 44	20 20	22 22	0	97,979 106,767	53 53	31 31	29 28	0	99,650 108,511	69 69	43 43	38 38	0	101,788 110,741	3450 3600
44	20	22	0	118,664	53	31	28	0	120,503	69	43	38	0	122,852	3800
44	20	22	0	131,190	53	31	28	0	133,123	69	43	38	0	135,591	4000

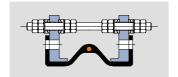

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

U111... (Tie rod B/E/C/M/R/K/L)

> with internal vacuum ring

					Install	ation le	ngth (L	_E) at de	sign pre	essure						
	up to 4 bar $L_E = 200 \text{ mm}$ up to 6 bar $L_E = 200 \text{ mm}$							oar L _E =			up to 4 bar $L_E = 250 \text{ mm}$ up to 6 bar $L_E = 300 \text{ mm}$					
				250 mm				oar L _E = bar L _E =	300 mm		up to 10 bar $L_E = 350 \text{ mm}$					
									n request							
Ø	М	Move	ment	\sim	A	М	Move	ment	\sim	A	М	Move	ment	\sim	A	
	\/		M	**		*\/*			**	M	*			**	M	
mm 100	mm 26	mm 4	±mm 18	±°	cm ²	mm 31	mm 3	±mm 19	±°	cm ²	mm 40	mm 7	±mm 28	±°	cm ² 254	
125 150	26 26	4	17 17	0	241 314	31 31	3	19 18	0	241 314	40 40	7 7	28 27	0	330 415	
175	26	4	17	0	415	31	3	18	0	415	40	7	27	0	531	
200 250	26 26	4	17 16	0	491 707	31 31	3	18 18	0	491 707	40 40	7 7	26 26	0	616 855	
300 350	26 26	4	16 16	0	973 1,288	31 31	3	17 17	0	973 1,288	40 40	7 7	26 25	0	1,146 1,486	
400	26	4	16	0	1,605	31	3	17	0	1,605	40	7	25	0	1,825	
450 500	26 26	4	15 15	0	1,987 2,402	31 31	3	17 17	0	1,987 2,402	40 40	7 7	25 24	0	2,231 2,669	
550 600						31 31	3	16 16	0	2,827 3,349	40 40	7 7	24 24	0	3,117 3,664	
650						31	3	16	0	3,848	40	7	24	0	4,185	
700 750						31 31	3	16 16	0	4,465 5,027	40 40	7 7	24 23	0	4,827 5,411	
800 850						31 31	3	16 16	0	5,741	40 40	7 7	23 23	0	6,151	
900						31	3	16	0	6,362 7,163	40	7	23	0	6,793 7,620	
950 1000						31 31	3	16 16	0	7,854 8,742	40 40	7 7	23 23	0	8,332 9,246	
1050 1100											40 40	7 7	23 23	0	10,029	
1150											40	7	23	0	11,047 11,882	
1200 1250											40 40	7 7	22 22	0	12,969 13,893	
1300											40	7	22	0	15,066	
1350 1400											40 40	7 7	22 22	0	16,061 17,320	
1450 1500											40 40	7 7	22 22	0	18,385 19,731	
1600											40	7	22	0	22,299	
1650 1700											40 40	7 7	22 22	0	23,506 25,025	
1800 1900											40 40	7 7	22 22	0	27,937 30,946	
1950											40	7	22	0	32,365	
2000 2100											40	7	21	0	34,143	
2200 2250																
2300																
2400 2500																
2550 2600																
2700																
2800 2850																
2900 3000																
3100																
3150 3200																
3300 3400																
3450																
3600 3800																
4000																

U111... (Tie rod B/E/C/M/R/K/L) > with internal vacuum ring


					Install	ation le	ngth (L	_E) at de	sign pre	essure					
		_	300 mm				bar L _E =						400 mm 450 mm		
			350 mm 400 mm				bar L _E = bar L _E =								
	up to 10	Dai LE —	400 111111				ressures o				up to 10	Dai LE —	500 mm		
	Move	ment		Α		Move	ement		Α		Move	ment		Α	
→ //-	<u>^</u>	₹.H	₩		→ // →	<u>^</u>	E.A	\rightleftharpoons		→ // →	^	E.A	\Rightarrow	M	Ø
mm	mm	±mm	₩ ±°	cm ²	Mm →	mm	±mm	₩ ±°	cm ²	Mm →	mm	±mm	₩ ±°	cm ²	mm
44	7	30	0	260	53	10	39	0	353	69	14	53	0	491	100
44 44	7 7	30 29	0	337 423	53 53	10 10	39 38	0	441 539	69 69	14 14	51 51	0	594 707	125 150
44	7	29	0	539	53	10	37	0	670	69	14	50	0	855	175
44 44	7 7	29 28	0	625 866	53 53	10 10	37 36	0	765 1,029	69 69	14 14	49 48	0	962 1,257	200 250
44	7	27	0	1,158	53	10	36	0	1,346	69	14	48	0	1,605	300
44	7	27	0	1,500	53	10	35	0	1,713	69	14	47	0	2,003	350
44 44	7 7	27 26	0	1,840 2,248	53 53	10 10	35 34	0	2,075 2,507	69 69	14 14	46 46	0	2,393 2,856	400 450
44	7	26	0	2,688	53	10	34	0	2,971	69	14	45	0	3,349	500
44 44	7 7	26 26	0	3,137 3,685	53 53	10 10	34 33	0	3,442 4,015	69 69	14 14	45 45	0	3,848 4,453	550 600
44	7	26	0	4,208	53	10	33	0	4,560	69	14	44	0	5,027	650
44 44	7 7	25 25	0	4,852 5,437	53 53	10 10	33 33	0	5,230 5,836	69 69	14 14	44 44	0	5,728 6,362	700 750
44	7	25	0	6,179	53	10	33	0	6,604	69	14	43	0	7,163	800
44	7 7	25	0	6,822	53	10	32	0	7,268	69	14	43	0	7,854	850
44 44	7	25 25	0	7,651 8,365	53 53	10 10	32 32	0	8,123 8,858	69 69	14 14	43 43	0	8,742 9,503	900 950
44	7	25	0	9,280	53	10	32	0	9,799	69	14	43	0	10,477	1000
44 44	7 7	25 24	0	10,064 11,085	53 53	10 10	32 32	0	10,605 11,652	69 69	14 14	42 42	0	11,310 12,390	1050 1100
44	7	24	0	11,921	53	10	32	0	12,509	69	14	42	0	13,273	1150
44 44	7 7	24 24	0	13,009 13,935	53 53	10 10	31 31	0	13,623 14,569	69 69	14 14	42 42	0	14,420 15,394	1200 1250
44	7	24	0	15,109	53	10	31	0	15,770	69	14	42	0	16,627	1300
44	7	24	0	16,106	53	10	31	0	16,787	69	14	41	0	17,671	1350
44 44	7 7	24 24	0	17,366 18,433	53 53	10 10	31 31	0	18,074 19,162	69 69	14 14	41 41	0	18,991 20,106	1400 1450
44	7	24	0	19,781	53	10	31	0	20,536	69	14	41	0	21,512	1500
44 44	7 7	24 24	0	22,352 23,561	53 53	10 10	31 31	0	23,154 24,384	69 69	14 14	41 41	0	24,190 25,447	1600 1650
44	7	23	0	25,081	53	10	30	0	25,930	69	14	41	0	27,026	1700
44 44	7	23 23	0	27,996 31,009	53 53	10 10	30 30	0	28,893 31,952	69 69	14 14	40 40	0	30,049 33,168	1800 1900
44	7	23	0	32,429	53	10	30	0	33,394	69	14	40	0	34,636	1950
44	7	23	0	34,209	53	10	30	0	35,199	69	14	40	0	36,474	2000
44 44	7 7	23 23	0	37,565 41,079	53 53	10 10	30 30	0	38,603 42,164	69 69	14 14	40 40	0	39,938 43,558	2100 2200
44	7	23	0	42,712	53	10	30	0	43,818	69	14	40	0	45,239	2250
44 44	7 7	23 23	0	44,750 48,578	53 53	10 10	30 29	0	45,882 49,757	69 69	14 14	40 39	0	47,336 51,271	2300 2400
44	7	23	0	52,563	53	10	29	0	53,789	69	14	39	0	55,363	2500
44 44	7 7	23 23	0	54,408 56,706	53 53	10 10	29 29	0	55,655 57,979	69 69	14 14	39 39	0	57,256 59,612	2550 2600
44	7	23	0	61,005	53	10	29	0	62,325	69	14	39	0	64,018	2700
44	7	22	0	65,461	53	10	29	0	66,829	69	14	39	0	68,581	2800
44 44	7 7	22 22	0	67,518 70,075	53 53	10 10	29 29	0	68,906 71,489	69 69	14 14	39 39	0	70,686 73,301	2850 2900
44	7	22	0	74,845	53	10	29	0	76,307	69	14	39	0	78,179	3000
44 44	7 7	22 22	0	79,773 82,041	53 53	10 10	29 29	0	81,282 83,571	69 69	14 14	38 38	0	83,213 85,530	3100 3150
44	7	22	0	84,857	53	10	29	0	86,413	69	14	38	0	88,405	3200
44	7 7	22 22	0	90,099 95,498	53	10 10	29 20	0	91,702 97,148	69 69	14 14	38	0	93,753 99,259	3300 3400
44 44	7	22	0	95,498	53 53	10	29 29	0	97,148	69 69	14	38 38	0	101,788	3400
44	7	22	0	106,767	53	10	28	0	108,511	69	14	38	0	110,741	3600
44 44	7 7	22 22	0	118,664 131,190	53 53	10 10	28 28	0	120,503 133,123	69 69	14 14	38 38	0	122,852 135,591	3800 4000

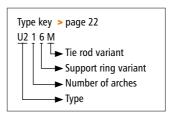
The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

U112... (Tie rod B/E/C/M/R/K/L)

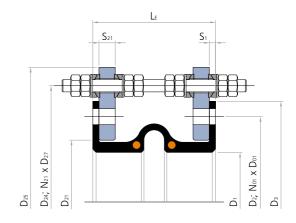
> with embedded vacuum ring

					Install	ation le	ngth (L	_E) at de	sign pre	ssure						
			oar L _E =					bar L _E =					oar L _E =	250 mm 300 mm		
	up to 10 bar L _E = 250 mm						up to 10	bar $L_E =$	300 mm		up to 10 bar L _E = 350 mm					
	Movement A						higher pressures on request Movement A					Movement A				
Ø	***			\times		**			\times		***			\times		
mm 100	mm 17	mm 4	±mm	±° 0	cm ²	mm 20	mm 2	±mm	±° 0	cm ²	mm 26	mm 6	±mm 27	±° 0	cm ²	
125 150	17 17	4	17 17	0	241 314	20	2 2	18 17	0	209 278	26 26	6	26 26	0	293 373	
175	17	4	17	0	415	20	2	17	0	373	26	6	26	0	483	
200 250	17 17	4	17 16	0	491 707	20	2 2	17 16	0	445 651	26 26	6	25 25	0	564 794	
300 350	17 17	4	16 16	0	973 1,288	20	2	16 16	0	908 1,213	26 26	6 6	24 24	0	1,075 1,405	
400 450	17 17	4	16 15	0	1,605 1,987	20 20	2 2	16 16	0	1,521 1,893	26 26	6 6	24 23	0	1,735 2,132	
500 550	17	4	15	0	2,402	20 20	2 2	15 15	0	2,299 2,715	26 26	6 6	23 23	0	2,561 3,000	
600 650						20 20	2 2	15 15	0	3,227 3,718	26 26	6 6	23 23	0	3,536 4,049	
700 750						20 20	2 2	15 15	0	4,324 4,877	26 26	6 6	23 22	0	4,681 5,255	
800 850						20 20	2 2	15 15	0	5,581 6,193	26 26	6 6	22 22	0	5,986 6,619	
900 950						20 20	2 2	15 15	0	6,984 7,667	26 26	6 6	22 22	0	7,436 8,139	
1000 1050						20	2	15	0	8,544	26 26	6 6	22 22	0	9,043 9,817	
1100 1150											26 26	6	22 22	0	10,825 11,652	
1200 1250											26 26	6	21	0	12,728 13,643	
1300 1350											26 26	6	21	0	14,806 15,792	
1400											26	6	21	0	17,041	
1450 1500											26 26	6	21	0	18,098 19,433	
1600 1650											26 26	6	21	0	21,983 23,181	
1700 1800											26 26	6 6	21 21	0	24,689 27,582	
1900 1950											26 26	6 6	21 21	0	30,573 31,984	
2000 2100											26	6	21	0	33,751	
2200 2250																
2300 2400																
2500 2550																
2600 2700																
2800 2850																
2900 3000																
3100																
3150 3200																
3300 3400																
3450 3600																
3800 4000																

U112... (Tie rod B/E/C/M/R/K/L) > with embedded vacuum ring


					Install	ation le	ngth (L	_E) at de	sign pre	essure					
		oar L _E =					oar L _E =					_	400 mm		
	•	oar L _E =	350 mm 400 mm				oar L _E =	400 mm 450 mm			•	-	450 mm : 500 mm		
	up to 10	Dui LE —	400 111111	_				n request	_		up to 10	Dai LE	300 111111		
	Move	ment		Α		Move	ment		Α		Move	ment		Α	
-1/-		£.H	\rightleftharpoons	M	→		£.H	\rightleftharpoons	M	-1/-	*	₹.H	\rightleftharpoons	M	Ø
mm	mm	±mm	₩ ±°	cm ²	mm [V]	mm	±mm	₩ ±°	cm ²	mm	mm	±mm	₩ ±°	cm ²	mm
29	6	29	0	232	35	9	38	0	320	46	13	51	0	423	100
29 29	6 6	29 28	0	305 387	35 35	9 9	38 37	0	405 499	46 46	13 13	50 49	0	519 625	125 150
29	6	28	0	499	35	9	36	0	625	46	13	48	0	765	175
29	6	28	0	581	35	9	36	0	716	46	13	48	0	866	200
29 29	6 6	27 27	0	814 1,099	35 35	9 9	35 35	0	973 1,282	46 46	13 13	47 46	0	1,146 1,479	250 300
29	6	26	0	1,432	35	9	34	0	1,640	46	13	45	0	1,863	350
29 29	6 6	26 26	0	1,765 2,165	35 35	9 9	34 33	0	1,995 2,419	46 46	13 13	45 44	0	2,240 2,688	400 450
29	6	25	0	2,597	35	9	33	0	2,875	46	13	44	0	3,167	500
29 29	6 6	25 25	0	3,039 3,578	35 35	9 9	33 33	0	3,339 3,904	46 46	13 13	44 43	0	3,653 4,243	550 600
29	6	25 25	0	4,094	35	9	32	0	4,441	46	13	43	0	4,243	650
29	6	25	0	4,729	35	9	32	0	5,102	46	13	43	0	5,489	700
29 29	6	24 24	0	5,307 6,041	35 35	9 9	32 32	0	5,701 6,461	46 46	13 13	42 42	0	6,110 6,896	750 800
29	6	24	0	6,677	35	9	32	0	7,118	46	13	42	0	7,574	850
29 29	6	24 24	0	7,497 8,203	35 35	9 9	31 31	0	7,964 8,692	46 46	13 13	42 41	0	8,446 9,195	900 950
29	6	24	0	9,110	35	9	31	0	9,625	46	13	41	0	10,153	1000
29	6	24	0	9,887	35	9	31	0	10,423	46	13	41	0	10,973	1050
29 29	6 6	24 24	0	10,899 11,728	35 35	9	31 31	0	11,461 12,311	46 46	13 13	41 41	0	12,037 12,908	1100 1150
29	6	23	0	12,808	35	9	31	0	13,417	46	13	41	0	14,040	1200
29 29	6	23 23	0	13,726 14,892	35 35	9	31 30	0	14,356 15,548	46 46	13 13	40 40	0	15,001 16,218	1250 1300
29	6	23	0	15,881	35	9	30	0	16,559	46	13	40	0	17,250	1350
29 29	6	23 23	0	17,134 18,194	35 35	9	30 30	0	17,837 18,918	46 46	13 13	40 40	0	18,554 19,656	1400 1450
29	6	23	0	19,532	35	9	30	0	20,283	46	13	40	0	21,047	1500
29	6	23	0	22,088	35	9	30	0	22,885	46	13	40	0	23,697	1600
29 29	6 6	23 23	0	23,289 24,801	35 35	9	30 30	0	24,108 25,645	46 46	13 13	39 39	0	24,941 26,504	1650 1700
29	6	23	0	27,700	35	9	30	0	28,592	46	13	39	0	29,498	1800
29 29	6 6	22 22	0	30,698 32,111	35 35	9	29 29	0	31,636 33,071	46 46	13 13	39 39	0	32,589 34,045	1900 1950
29	6	22	0	33,882	35	9	29	0	34,867	46	13	39	0	35,867	2000
29 29	6 6	22 22	0	37,223 40,721	35 35	9 9	29 29	0	38,256 41,801	46 46	13 13	39 38	0	39,303 42,895	2100 2200
29	6	22	0	40,721	35	9	29	0	43,447	46	13	38 38	0	44,563	2250
29	6	22	0	44,376	35	9	29	0	45,503	46	13	38	0	46,645	2300
29 29	6 6	22 22	0	48,188 52,158	35 35	9	29 29	0	49,363 53,379	46 46	13 13	38 38	0	50,551 54,615	2400 2500
29	6	22	0	53,995	35	9	29	0	55,238	46	13	38	0	56,495	2550
29 29	6	22 22	0	56,284 60,568	35 35	9	29 28	0	57,553 61,883	46 46	13 13	38 38	0	58,836 63,213	2600 2700
29	6	22	0	65,008	35	9	28	0	66,371	46	13	38	0	67,748	2800
29	6	22	0	67,058	35	9	28	0	68,442	46	13	37	0	69,840	2850
29 29	6 6	22 22	0	69,606 74,361	35 35	9 9	28 28	0	71,016 75,818	46 46	13 13	37 37	0	72,440 77,289	2900 3000
29	6	21	0	79,273	35	9	28	0	80,777	46	13	37	0	82,295	3100
29 29	6 6	21 21	0	81,534 84,342	35 35	9	28 28	0	83,060 85,893	46 46	13 13	37 37	0	84,599 87,459	3150 3200
29	6	21	0	89,568	35	9	28	0	91,166	46	13	37	0	92,779	3300
29	6	21	0	94,951	35	9	28	0	96,597	46	13	37	0	98,256	3400
29 29	6 6	21 21	0	97,425 106,188	35 35	9 9	28 28	0	99,091 107,928	46 46	13 13	37 37	0	100,772 109,682	3450 3600
29	6	21	0	118,054	35	9	28	0	119,888	46	13	37	0	121,736	3800
29	6	21	0	130,548	35	9	27	0	132,477	46	13	36	0	134,419	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.


U216... (Tie rod B/E/C/M/R/K/L) ø 100 - 4,000 mm

> Type U216M

Cross section U216M

Lateral expansion joint with one arch

Design: Thick-walled, single arch rubber bellows with full faced rubber

flanges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, with support rings at the foot arch and split backing flanges with tie-rods borne in spherical washers. In compliance with PED 2014/68/EU, FSA Technical Handbook and

ASTM F1123 - 87.

Diameters: \emptyset 100 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 250$ to 350 mm (> page 221)

Custom length on request

Pressure: Up to 25 bar depending on diameter and length

Vacuum-proof

Movement: For lateral and angular (2 tie rod design) movements*

Spring rate: The embedded support rings and reinforcements

generate large spring rates

*Installation gap tolerances according to axial movement capability of the expansion joint

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e. g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part integral backing flanges with clearance holes and tie rod holders

(tie rod type B, E, C, M)

Single- or multi-part backing flanges with clearance holes and tie rod gusset plates

(tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:

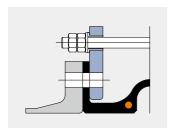
Tie rods

Design: Dimensioning according to design

pressure (test pressure) based on the

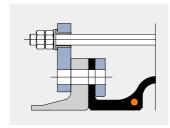
Pressure Equipment Directive

Materials: Carbon steel

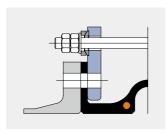

Stainless steel

Coating: Spherical washers/ball disks:

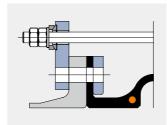
PTFE coated


Tie rods: galvanised, hot-dip galvanised or PTFE-coated

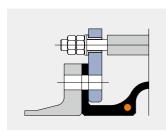
Example: Type U216M


Type U216B

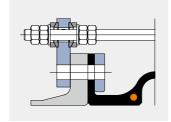
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U216R

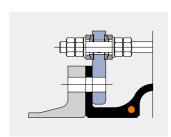
Gusset plate: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U216E

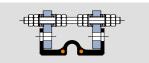
Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U216K

Gusset plate: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U216C

Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces


Type U216L

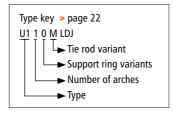
Gusset plate: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces

Type U216M

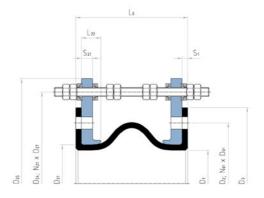
Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces

U216... (Tie rod B/E/C/M/R/K/L) > with one arch

					Install	ation le	ngth (L	_∈) at de	sign pre	essure					
		up to 10	bar $L_E =$	250 mm					300 mm			up to 10	bar $L_E =$	350 mm	
		Move	ement					ressures o ement	n request			Move	ement		
Ø	***			\(\frac{1}{12}\)		**			\(\tau\)		**			\(\tau\)	
mm	mm 35	mm	±mm	±°	cm ²	mm 41	mm	±mm	±°	cm ²	mm 47	mm	±mm	±°	cm ²
100 125	35	15 15	27 25	0	346 434	41 41	21 21	35 34	0	460 560	47 47	24 24	40 39	0	573 683
150	35	15	25	0	531	41	21	33	0	670	47	24	37	0	804
175 200	35 35	15 15	24 23	0	661 755	41 41	21 21	32 31	0	814 919	47 47	24 24	36 35	0	962 1,075
250	35	15	22	0	1,018	41	21	30	0	1,207	47	24	34	0	1,385
300	35	15	22	0	1,333	41	21	29	0	1,548	47	24	33	0	1,750
350 400	35 35	15 15	21 21	0	1,698 2,059	41 41	21 21	28 27	0	1,940 2,324	47 47	24 24	32 31	0	2,165 2,570
450	35	15	20	0	2,489	41	21	27	0	2,324	47	24	31	0	3,048
500	35	15	20	0	2,951	41	21	26	0	3,267	47	24	30	0	3,557
550	35	15	19	0	3,421	41	21	26	0	3,761	47	24	29	0	4,072
600 650	35 35	15 15	19 19	0	3,993 4,536	41 41	21 21	25 25	0	4,359 4,927	47 47	24 24	29 29	0	4,693 5,281
700	35	15	19	0	5,204	41	21	25	0	5,621	47	24	28	0	5,999
750	35	15	18	0	5,809	41	21	24	0	6,249	47	24	28	0	6,648
800 850	35 35	15 15	18 18	0	6,576 7,238	41 41	21 21	24 24	0	7,044 7,729	47 47	24 24	28 27	0	7,466 8,171
900	35	15	18	0	8,091	41	21	24	0	8,610	47	24	27	0	9,076
950	35	15	18	0	8,825	41	21	23	0	9,366	47	24	27	0	9,852
1000 1050	35 35	15 15	17 17	0	9,764 10,568	41 41	21 21	23 23	0	10,333 11,159	47 47	24 24	26 26	0	10,843 11,690
1100	35	15	17	0	11,613	41	21	23	0	12,233	47	24	26	0	12,788
1150	35	15	17	0	12,469	41	21	23	0	13,110	47	24	26	0	13,685
1200	35	15	17	0	13,581	41	21	22	0	14,250	47	24	26	0	14,849
1250 1300	35 35	15 15	17 17	0	14,527 15,725	41 41	21 21	22 22	0	15,218 16,445	47 47	24 24	25 25	0	15,837 17,087
1350	35	15	17	0	16,742	41	21	22	0	17,483	47	24	25	0	18,146
1400	35	15	16	0	18,027	41	21	22	0	18,796	47	24	25	0	19,483
1450 1500	35 35	15 15	16 16	0	19,113 20,485	41 41	21 21	22 22	0	19,906 21,305	47 47	24 24	25 25	0	20,612 22,035
1600	35	15	16	0	23,100	41	21	21	0	23,970	47	24	24	0	24,745
1650	35	15	16	0	24,328	41	21	21	0	25,221	47	24	24	0	26,016
1700 1800	35 35	15 15	16 16	0	25,873 28,832	41 41	21 21	21 21	0	26,793 29,804	47 47	24 24	24 24	0	27,612 30,666
1900	35	15	16	0	31,889	41	21	21	0	32,910	47	24	24	0	33,816
1950	35	15	15	0	33,329	41	21	21	0	34,373	47	24	23	0	35,299
2000 2100	35 35	15 15	15 15	0	35,133 38,533	41 41	21 21	20 20	0	36,204 39,655	47 47	24 24	23 23	0	37,154 40,649
2200	35	15	15	0	42,091	41	21	20	0	43,263	47	24	23	0	44,301
2250	35	15	15	0	43,744	41	21	20	0	44,938	47	24	23	0	45,996
2300 2400	35 35	15 15	15 15	0	45,806 49,678	41 41	21 21	20 20	0	47,028 50,950	47 47	24 24	23 23	0	48,111 52,077
2500	35	15	15	0	53,707	41	21	20	0	55,030	47	24	22	0	56,200
2550	35	15	15	0	55,572	41	21	20	0	56,917	47	24	22	0	58,107
2600 2700	35 35	15 15	15 15	0	57,893 62,237	41 41	21 21	19 19	0	59,266 63,660	47 47	24 24	22 22	0	60,481 64,918
2800	35	15	14	0	66,737	41	21	19	0	68,210	47	24	22	0	69,513
2850	35	15	14	0	68,813	41	21	19	0	70,309	47	24	22	0	71,631
2900 3000	35 35	15 15	14 14	0	71,394 76,209	41 41	21 21	19 19	0	72,918 77,783	47 47	24 24	22 22	0	74,264 79,173
3100	35	15	14 14	0	76,209 81,181	41	21	19	0	82,805	47	24	22	0	79,173 84,239
3150	35	15	14	0	83,469	41	21	19	0	85,116	47	24	21	0	86,570
3200	35	15 15	14	0	86,309	41	21	19	0	87,984	47	24	21	0	89,462
3300 3400	35 35	15 15	14 14	0	91,595 97,038	41 41	21 21	19 19	0	93,320 98,813	47 47	24 24	21 21	0	94,842 100,379
3450	35	15	14	0	99,538	41	21	19	0	101,336	47	24	21	0	102,922
3600	35	15	14	0	108,395	41	21	18	0	110,270	47	24	21	0	111,924
3800 4000	35 35	15 15	14 14	0	120,380 132,993	41 41	21 21	18 18	0	122,356 135,070	47 47	24 24	21 21	0	124,098 136,900


Recommended sizes
Further possible sizes

Reduction of movement for expansion joints with filled arch: axial compression: -50 %; axial extension: -75 %; lateral displacement: -50 %. In the event of lateral displacement and simultaneous axial extension the above movements are reduced (> page 29).


U110... LDJ (Tie rod B/E/C/M/R/K/L) ø 80 - 4,000 mm

- > Type U110... LDJ (Tie rod B/E/C/M/R/K/L) without vacuum ring
- > Type U111... LDJ (Tie rod B/E/C/M/R/K/L) with internal vacuum ring
- > Type U112 ... LDJ (Tie rod B/E/C/M/R/K/L) with embedded vacuum ring

Cross section U110M LDJ

Lateral dismantling joint

Design:

Rubber expansion joints as dismantling joints play a decisive role in the design and layout of pipelines and valves. They are an essential aid during the installation and removal of pipe sections and piping equipment. Without a dismantling joint offering axial, lateral, angular and some minor torsional adjustments, it is almost impossible to insert a valve exactly into a pipe section. Thanks to this all-directional adjustability, the valve can be fitted next to the dismantling joint, and the rubber expansion joint can compensate for installation tolerances prior to being securely connected to the mating flanges.

ditec's dismantling rubber expansion joints are specifically designed for self-retraction to facilitate access to piping and equipment as well as for unmatched ease of installation and subsequent removal. Only the rubber bellow with its close to unlimited medium compatibility is in contact with the fluid so that the use of costly stainless steel materials or special coatings are unnecessary.

Dismantling rubber expansion joints are high elastic, streamlined, have depending from expected installation tolerances or movements single or multiple wide archs with full faced rubber flanges or swivel flanges with sealing bulge, have a cycle life in the tens of millions, are constructed with a high-grade leak-proof tube,

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e.g. in pipelines, on pumps, valves

instructions at: www.ditec-adam.de/ en/contact

multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Lateral dismantling joints are installed in unanchored piping or isolated equipment. The primary function of the integrated tie rods is to continuously restrain expansion joints axially during normal operation. The tie rods will act as the primary restraint by continuously restraining the full pressure thrust loads. If the pipline is out of service the tie rods are used also to retract the expansion joint bellow to receive space for dismantling and installation purposes of nearby pipe sections or valves. Tie rod designs are based on the calculated thrust force of the rubber expansion joint at the specified pressure and are attached to the external or internal hardware of the expansion joint.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: $L_E = 200 \text{ to } 500 \text{ mm (> page } 212-217)$

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar absolute

Movement: For lateral and angular (2 tie rod design) movements*

For movement capabilities refer to type U110M (> page 212-217)

‡

Spring rate: Lateral spring rates (> page 296)

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

PTFE-lining: Firmly embedded against chemical attacks on the interior at the rubber bellows, available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 212–217)

^{*}Installation gap tolerances according to axial movement capability of the expansion joint

224 Lateral expansion joints with full faced rubber flange

Backing flanges

Design: Single- or multi-part integral backing flanges with support collar, clearance holes and tie rod

holders (tie rod type B, E, C, M)

Single- or multi-part backing flanges with support collar, clearance holes and

tie rod gusset plates (tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

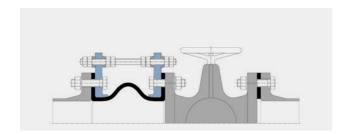
Fire protective cover (> page 58)

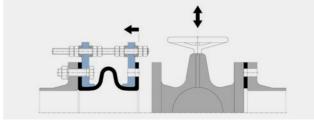
Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:




(> page 42)

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
U110 LDJ		None	Depending on the diameter up to 100 bar, vacuum stability on request	> page 212–213
U111 LDJ		Medium contact, inside the arch	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 214–215
U112 LDJ		No medium contact, embedded in the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 216–217
Materials				
Stainless stee	I	Carbon steel, rubberised	Carbon steel, em	bedded

Working principle of a dismantling joint

in operation

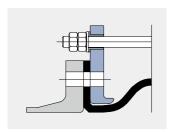
Note: check tie-rod clashing with valve or pump body

Tie rods

Example: Type U110M LDJ

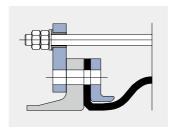
Design: Dimensioning according to design

pressure (test pressure) based on the Pressure Equipment Directive

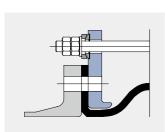

Materials: Carbon steel

Stainless steel

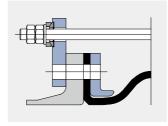
Coating: Spherical washers/ball disks:


PTFE coated

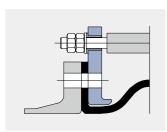
Tie rods: galvanised, hot-dip galvanised or PTFE-coated


Type U110B

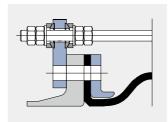
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U110R

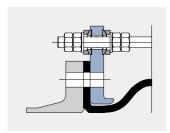
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U110E

Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces

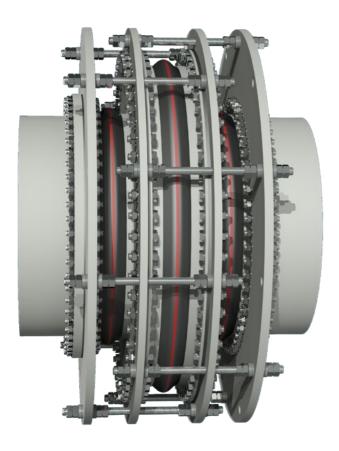

Type U110K

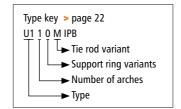
Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U110C

Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces

Type U110L


Gusset plates: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces


Type U110M

Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

U110M IPB Ø 80 - 4,000 mm

- > Type U110M IPB without vacuum rings
- > Type U111M IPB with internal vacuum rings
- > Type U112M IPB with embedded vacuum rings

In-line pressure balanced expansion joint

Design:

In-line pressure balanced expansion joints are designed to absorb movements from a pipe system. They can accommodate axial and lateral movements where anchoring of the pipe system is difficult or impractical due to structural or economic considerations. Pressure balanced expansion joints do not transfer the internal pressure thrust on to the fix points, adjacent equipment, or structures. In-line pressure balanced rubber expansion joints are the only effective solution for directly absorbing large axial movements while continuously self-restraining the pressure thrust forces. This arrangement consists of tie devices inter-connecting its main joint sections to its opposing balancing joint section.

Therefore, pressure balanced expansion joints can offer significant advantages, where pipe systems are connected with turbines, pumps, valves or other equipment, that are unable to withstand pressure thrust loads. Although pressure balanced expansion joints eliminate pressure thrust, it's important to note that the existing load on the surrounding equipment is the total sum of the spring rates of both the two main bellows and the balancing bellow. The balancing rubber expansion joint needs to be twice the effective area as the main rubber expansion joints. In operation the main bellows of the pressure balanced unit will contract from axial movement of the piping while the balancing bellow will expand.

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e.g. in pipelines, on pumps, on condensers and vessels

instructions at: vww.ditec-adam.de/ Length:

In-line pressure balanced rubber expansion joints are high elastic, streamlined, have depending from the expected axial or lateral movements single or multiple wide archs with full faced rubber flanges, have a cycle life in the tens of millions, are constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum rings. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Diameters: Ø 80 to 4,000 mm, custom diameters possible Custom length on request

Pressure: Up to 40 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar absolute

Movement: For axial and lateral movements

→ ‡ (> page 212–217)

Spring rate: The total axial spring rate is the axial spring rate of the balancing expansion joint

plus once the axial spring rate of the main bellow

The total lateral spring rate is 1/3 of each bellows lateral spring rate plus the

friction forces of the tie rods bearings

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

PTFE-lining: Firmly embedded against chemical attacks on the interior at the rubber bellows, available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 212–217)

Backing flanges

Design: Single-part integral backing flanges with support collar, clearance holes and tie rod holders

(tie rod type M)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Tie rods

Design: Dimensioning according to design

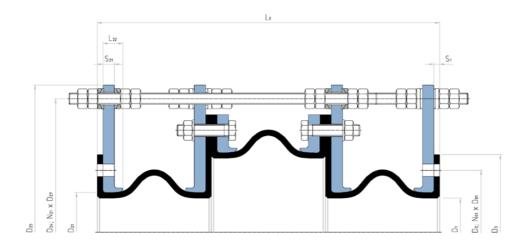
pressure (test pressure) based on the Pressure Equipment Directive

Materials: Carbon steel

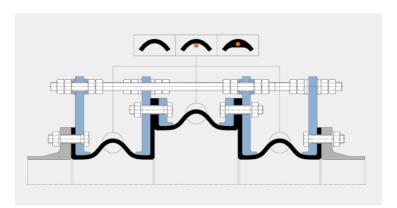
Stainless steel

Coating: Spherical washers/ball disks:

PTFE coated


Tie rods: galvanised, hot-dip galvanised or PTFE-coated

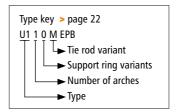
Example: Type U112M IPB



Cross section U110M IPB

Support rings

TYPE	Support rings		Vacuum ring	Pres	ssure	Movement
U110M IPB			None	dian	ending on the neter up to 40 bar, num stability on nest	> page 212–213
U111M IPB			Medium contact, inside the arch apex	dian for v	ending on the neter up to 40 bar, vacuum up to 0.05 absolute	> page 214–215
U112M IPB			No medium contact, embedded in the arch	dian for v	ending on the neter up to 25 bar, vacuum up to 5 bar absolute	> page 216–217
Materials						
Stainless stee	I	Carbo	on steel, rubberised		Carbon steel, emb	edded



U110M EPB Ø 80 - 4,000 mm

- > Type U110M EPB without vacuum rings
- > Type U111M EPB with internal vacuum rings
- > Type U112M EPB with embedded vacuum rings

Elbow pressure balanced expansion joint

Design:

Elbow pressure balanced expansion joints or corner relief expansion joints are the types of pressure balanced expansion joints, which are used where pressure thrust forces on equipment or piping is unacceptable and the direction of the pipe system also changes.

By installing elbow pressure balanced expansion joints, the pressure thrust force is balanced internally within the expansion joint and only the spring rate force, which is needed to move the pipe expansion joint is transmitted to the pipe system. This arrangement consists of tie devices inter-connecting its main joint section to its opposing balancing joint section and reduces the load acting on the guides/fix points, which further reduces the need for supporting structures.

Elbow pressure balanced rubber expansion joints are high elastic, streamlined, have depending from the expected axial or lateral movements single or multiple wide archs with full faced rubber flanges, have a cycle life in the tens of millions, are constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and backing flanges with support collar. Optional with vacuum rings. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e.g. in pipelines, on pumps, valves

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Custom length on request

Pressure: Up to 40 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar absolute

Movement: For axial and lateral movements

→ \$ (> page 212–217)

Spring rate: Axial and lateral spring rates (> page 296)

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

PTFE-lining: Firmly embedded against chemical attacks on the interior at the rubber bellows, available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 212–217)

Backing flanges

Design: Single-part integral backing flanges with support collar, clearance holes and tie rod holders

(tie rod type M)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Tie rods

Design: Dimensioning according to design

pressure (test pressure) based on the Pressure Equipment Directive

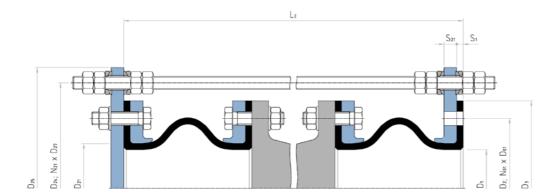
Materials: Carbon steel

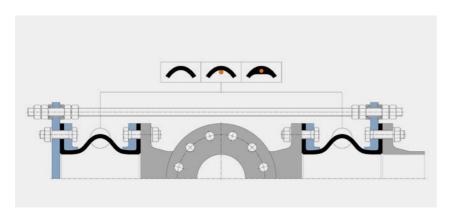
Stainless steel

Coating: Spherical washers/ball disks:

PTFE coated

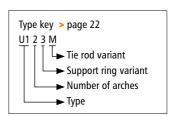
Tie rods: galvanised, hot-dip galvanised or PTFE-coated


Example: Type U112M EPB



Cross section U110M EPB

Support rings



TYPE	Support rings	Vacuum ring	Pressure	Movement
U110M EPB		None	Depending on the diameter up to 40 bar, vacuum stability on request	> page 212–213
U111M EPB		Medium contact, inside the arch apex	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 214–215
U112M EPB		No medium contact, embedded in the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 216–217
Materials				
Stainless stee	I	Carbon steel, rubberised	Carbon steel, emb	edded

U120M Ø 80 - 4,000 mm

- > Type U120M without vacuum rings
- > Type U121M with internal vacuum rings
- > Type U122M with embedded vacuum rings
- > Type U123M without vacuum rings, with external support ring
- > Type U124M with internal vacuum rings, with external support ring
- > Type U125M with embedded vacuum rings, with external support ring

Lateral expansion joint with two arches

Design: Streamlined, double or multiple wide arch rubber bellows with

full faced rubber flanges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single- or multi-part backing flanges with tie-rods borne in spherical washers. Optional with vacuum rings and/or external support ring(s). In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Diameters: Ø 80 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 350$ to 650 mm (> page 242–247)

Custom length on request

Pressure: Up to 100 bar depending on diameter and length

Vacuum not allowed without vacuum rings, with vacuum rings

up to 0.05 bar absolute

Movement: For very large lateral and angular (2 tie rod design) movements*

Spring rate: To calculate the lateral spring rate for multiple arch joints,

divide our single arch values of type U110A by the number of

arches (> page 296)

*Installation gap tolerances according to axial movement capability of the expansion joint

Application:

Cooling water systems, desalination plants, drinking water supply, plant constructions e. g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 242–247)

Backing flanges

Design: Single- or multi-part integral backing flanges with support collar, clearance holes and tie rod

holders (tie rod type B, E, C, M)

Single- or multi-part backing flanges with support collar, clearance holes and

tie rod gusset plates (tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective cover (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

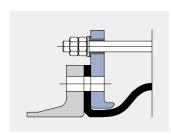
Filled arch:

Tie rods

Design: Dimensioning according to design

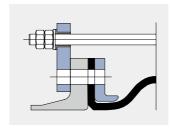
pressure (test pressure) based on the Pressure Equipment Directive

Materials: Carbon steel

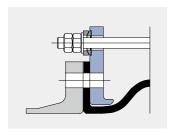

Stainless steel

Coating: Spherical washers/ball disks:

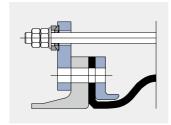
PTFE coated


Tie rods: galvanised, hot-dip galvanised or PTFE-coated

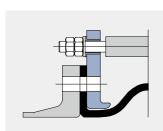
Example: Type U124M


Type U120B

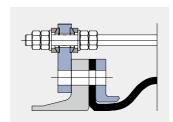
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U120R

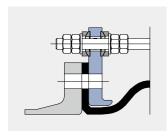
Gusset plate: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type U120E

Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces

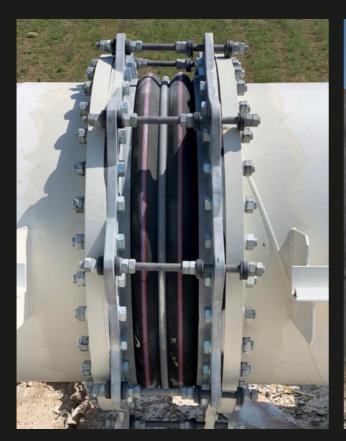

Type U120K

Gusset plate: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type U120C

Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces

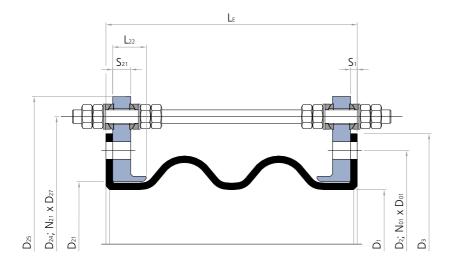
Type U120L


Gusset plate: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

Type U120M

Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces

Installation of tied rubber expansion joints \varnothing 1,400 mm in a ring water line of a copper mine



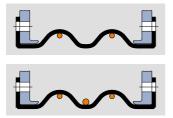
Support rings

TYPE	Support rings		Vacuum ring	Support ring	Pressure	Movement
U120M			None	None	Low pressure, vacuum stability on request	> page 242–243
U121M			Medium contact, inside the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 244–245
U122M			No medium contact, embedded in the arches	None	Low pressure, for vacuum up to 0.05 bar absolute	> page 246–247
U123M			None	External between the arches	Depending on the diameter up to 100 bar, slight vacuum	> page 242–243
U124M			Medium contact, inside the arches	External between the arches	Depending on the diameter up to 100 bar, for vacuum up to 0.05 bar absolute	> page 244–245
U125M			No medium contact, embedded in the arches	External between the arches	Depending on the diameter up to 40 bar, for vacuum up to 0.05 bar absolute	> page 246–247
Materials	5					
Stainless	steel	Carbon steel, r	ubberised	Carb	oon steel, embedded	

Cross section U120A

> without vacuum rings, with external support ring

					Install	ation le	nath (L	ء) at de	sign pre	ssure						
			bar L _E =				up to 4 l	bar L _E =	350 mm				oar L _E =			
			bar $L_E =$ bar $L_E =$				up to 6 l up to 10	450 mm		up to 6 bar $L_E = 450 \text{ mm}$ up to 10 bar $L_E = 500 \text{ mm}$						
		Move	ement			higher pressures on request Movement					Movement _A					
Ø	-M-	IVIOVE		\bowtie	Â	<u>_</u> M_	NIOVE		\bowtie	Â	<u>-</u> M_	WIOVE	T.	\bowtie	Â	
mm	mm .	mm	±mm	₩ ±°	cm ²	mm .	mm	±mm	$\underset{\pm^{\circ}}{\smile}$	cm ²	mm .	mm	±mm	₩ ±°	cm ²	
100 125	53 53	22 22	35 34	0	177 241	62 62	20 20	38 38	0	177 241	80 80	40 40	56 55	0	254 330	
150 175	53 53	22	34 33	0	314 415	62 62	20	37 36	0	314 415	80 80	40 40	54 54	0	415 531	
200	53	22	33	0	491	62	20	36	0	491	80	40	53	0	616	
250 300	53 53	22 22	32 32	0	707 973	62 62	20 20	35 35	0	707 973	80 80	40 40	52 51	0	855 1,146	
350 400	53 53	22 22	31 31	0	1,288 1,605	62 62	20 20	34 34	0	1,288 1,605	80 80	40 40	50 50	0	1,486 1,825	
450 500	53 53	22 22	31 30	0	1,987 2,402	62 62	20 20	33 33	0	1,987 2,402	80 80	40 40	49 49	0	2,231 2,669	
550 600						62 62	20 20	33 33	0	2,827 3,349	80 80	40 40	48 48	0	3,117 3,664	
650						62	20	32	0	3,848	80	40	48	0	4,185	
700 750						62 62	20	32 32	0	4,465 5,027	80	40 40	47 47	0	4,827 5,411	
800 850						62 62	20 20	32 32	0	5,741 6,362	80 80	40 40	47 46	0	6,151 6,793	
900 950						62 62	20 20	31 31	0	7,163 7,854	80 80	40 40	46 46	0	7,620 8,332	
1000 1050						62	20	31	0	8,742	80 80	40 40	46 46	0	9,246 10,029	
1100 1150											80 80	40 40	45 45	0	11,047 11,882	
1200											80	40	45	0	12,969	
1250 1300											80 80	40 40	45 45	0	13,893 15,066	
1350 1400											80 80	40 40	45 44	0	16,061 17,320	
1450 1500											80 80	40 40	44 44	0	18,385 19,731	
1600 1650											80 80	40 40	44 44	0	22,299 23,506	
1700 1800											80 80	40 40	44 43	0	25,025 27,937	
1900											80	40	43	0	30,946	
1950 2000											80 80	40 40	43 43	0	32,365 34,143	
2100 2200																
2250 2300																
2400 2500																
2550 2600																
2700 2800																
2850																
2900 3000																
3100 3150																
3200 3300																
3400 3450																
3600																
3800 4000																



> without vacuum rings, with external support ring

					Install	ation le	ength (L	_{-E}) at de	sign pre	essure					
		bar L _E =					bar L _E =					oar L _E =			
up to 6 bar $L_E = 500 \text{ mm}$ up to 10 bar $L_E = 550 \text{ mm}$					up to 6 bar $L_E = 550 \text{ mm}$ up to 10 bar $L_E = 600 \text{ mm}$					up to 6 bar $L_E = 600 \text{ mm}$ up to 10 bar $L_E = 650 \text{ mm}$					
	ap to 10	Jui LE -	330 IIIII				ressures o								
	Move	ement		Α		Move	ement		Α		Move	ment		Α	
→ // →	<u>^</u>	ĮΉ	₩		- M-	^ +	ĮΉ	\Rightarrow		→		Ę.	₩	M	Ø
mm	mm	±mm	$\underset{\pm^{\circ}}{\smile}$	cm ²	mm	mm	±mm	$\overset{\pm^{\circ}}{\sim}$	cm ²	mm	mm	±mm	₩ ±°	cm ²	mm
88	41	61	0	260	106	61	79	0	353	124	82	97	0	460	100
88	41 41	60 59	0	337 423	106 106	61 61	77 76	0	441 539	124 124	82 82	95 93	0	560	125 150
88 88	41	58	0	539	106	61	76 75	0	670	124	82	93 92	0	670 814	175
88	41	57	0	625	106	61	74	0	765	124	82	91	0	919	200
88 88	41 41	56 55	0	866 1,158	106 106	61 61	72 71	0	1,029 1,346	124 124	82 82	89 88	0	1,207 1,548	250 300
88	41	54	0	1,500	106	61	70	0	1,713	124	82	86	0	1,940	350
88	41	54	0	1,840	106	61	69	0	2,075	124	82	85	0	2,324	400
88 88	41 41	53 52	0	2,248 2,688	106 106	61 61	69 68	0	2,507 2,971	124 124	82 82	84 84	0	2,781 3,267	450 500
88	41	52	0	3,137	106	61	67	0	3,442	124	82	83	0	3,761	550
88	41	52 51	0	3,685	106	61	67 66	0	4,015	124	82	82	0	4,359	600
88 88	41 41	51 51	0	4,208 4,852	106 106	61 61	66 66	0	4,560 5,230	124 124	82 82	82 81	0	4,927 5,621	650 700
88	41	51	0	5,437	106	61	66	0	5,836	124	82	81	0	6,249	750
88 88	41 41	50 50	0	6,179 6,822	106 106	61 61	65 65	0	6,604 7,268	124 124	82 82	80 80	0	7,044 7,729	800 850
88	41	50	0	7,651	106	61	64	0	8,123	124	82	79	0	8,610	900
88	41	49	0	8,365	106	61	64	0	8,858	124	82	79	0	9,366	950
88 88	41 41	49 49	0	9,280 10,064	106 106	61 61	64 64	0	9,799 10,605	124 124	82 82	79 78	0	10,333 11,159	1000 1050
88	41	49	0	11,085	106	61	63	0	11,652	124	82	78	0	12,233	1100
88	41	49	0	11,921	106	61	63	0	12,509	124	82	78	0	13,110	1150
88 88	41 41	48 48	0	13,009 13,935	106 106	61 61	63 63	0	13,623 14,569	124 124	82 82	77 77	0	14,250 15,218	1200 1250
88	41	48	0	15,109	106	61	62	0	15,770	124	82	77	0	16,445	1300
88 88	41 41	48 48	0	16,106 17,366	106 106	61 61	62 62	0	16,787 18,074	124 124	82 82	76 76	0	17,483 18,796	1350 1400
88	41	48	0	18,433	106	61	62	0	19,162	124	82	76 76	0	19,906	1450
88	41	47	0	19,781	106	61	62	0	20,536	124	82	76	0	21,305	1500
88 88	41 41	47 47	0	22,352 23,561	106 106	61 61	61 61	0	23,154 24,384	124 124	82 82	75 75	0	23,970 25,221	1600 1650
88	41	47	0	25,081	106	61	61	0	25,930	124	82	75	0	26,793	1700
88	41	47	0	27,996	106	61	61	0	28,893	124	82	74	0	29,804	1800
88 88	41 41	46 46	0	31,009 32,429	106 106	61 61	60 60	0	31,952 33,394	124 124	82 82	74 74	0	32,910 34,373	1900 1950
88	41	46	0	34,209	106	61	60	0	35,199	124	82	74	0	36,204	2000
88	41	46 46	0	37,565	106	61	60	0	38,603	124	82	73 72	0	39,655	2100 2200
88 88	41 41	46 46	0	41,079 42,712	106 106	61 61	59 59	0	42,164 43,818	124 124	82 82	73 73	0	43,263 44,938	2250
88	41	46	0	44,750	106	61	59	0	45,882	124	82	73	0	47,028	2300
88 88	41 41	45 45	0	48,578 52,563	106 106	61 61	59 59	0	49,757 53,789	124 124	82 82	72 72	0	50,950 55,030	2400 2500
88	41	45 45	0	54,408	106	61	59	0	55,655	124	82	72 72	0	56,917	2550
88	41	45	0	56,706	106	61	59	0	57,979	124	82	72	0	59,266	2600
88 88	41 41	45 45	0	61,005 65,461	106 106	61 61	58 58	0	62,325 66,829	124 124	82 82	72 71	0	63,660 68,210	2700 2800
88	41	45	0	67,518	106	61	58	0	68,906	124	82	71	0	70,309	2850
88	41	45 45	0	70,075	106	61	58	0	71,489	124	82	71 71	0	72,918	2900
88 88	41 41	45 44	0	74,845 79,773	106 106	61 61	58 58	0	76,307 81,282	124 124	82 82	71 71	0	77,783 82,805	3000 3100
88	41	44	0	82,041	106	61	58	0	83,571	124	82	71	0	85,116	3150
88	41	44	0	84,857	106	61 61	57 57	0	86,413	124	82	71 70	0	87,984	3200
88 88	41 41	44 44	0	90,099 95,498	106 106	61 61	57 57	0	91,702 97,148	124 124	82 82	70 70	0	93,320 98,813	3300 3400
88	41	44	0	97,979	106	61	57	0	99,650	124	82	70	0	101,336	3450
88 88	41 41	44 44	0	106,767 118,664	106 106	61 61	57 57	0	108,511 120,503	124 124	82 82	70 70	0	110,270 122,356	3600 3800
88	41	43	0	131,190	106	61	56	0	133,123	124	82	69	0	135,070	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

U121M> with internal vacuum rings

U124M

> with internal vacuum rings, with external support ring

		un to A	bar L _E =	2E0 mm	Install	ation le		. _E) at de bar L _E =	sign pre	essure		un to A	oar L _E =	400 mm	
			bar $L_E =$					bar $\mathbf{L}_{E} =$							
			bar $L_E =$				up to 10	$\text{bar } \textbf{L}_{\text{E}} =$	450 mm					500 mm	
		M				higher pressures on request									
Ø	М	IVIOVE	ement	\sim	A L	Ы	Move	ement Ku	\sim	A	М	Move	ment	\sim	A L/NJ
, D	*\/*		1	\forall	\mathbb{H}	*		1	\bowtie	\mathbb{H}	*\/*			\forall	W
mm 100	mm 53	mm 7	±mm 35	±°	cm ²	mm 62	mm 7	±mm	±°	cm ²	mm 80	mm 13	±mm 56	±°	cm ² 254
125	53	7	34	0	241	62	7	38	0	241	80	13	55	0	330
150 175	53 53	7 7	34 33	0	314 415	62 62	7 7	37 36	0	314 415	80 80	13 13	54 54	0	415 531
200	53	7	33	0	491	62	7	36	0	491	80	13	53	0	616
250 300	53 53	7 7	32 32	0	707 973	62 62	7 7	35 35	0	707 973	80 80	13 13	52 51	0	855 1,146
350	53	7	31	0	1,288	62	7	34	0	1,288	80	13	50	0	1,486
400 450	53 53	7 7	31 31	0	1,605 1,987	62 62	7 7	34 33	0	1,605 1,987	80 80	13 13	50 49	0	1,825 2,231
500 550	53	7	30	0	2,402	62 62	7 7	33 33	0	2,402 2,827	80 80	13 13	49 48	0	2,669 3,117
600						62	7	33	0	3,349	80	13	48	0	3,664
650 700						62 62	7 7	32 32	0	3,848 4,465	80 80	13 13	48 47	0	4,185 4,827
750						62	7	32	0	5,027	80	13	47	0	5,411
800 850						62 62	7 7	32 32	0	5,741 6,362	80 80	13 13	47 46	0	6,151 6,793
900						62	7	31	0	7,163	80	13	46	0	7,620
950 1000						62 62	7 7	31 31	0	7,854 8,742	80	13 13	46 46	0	8,332 9,246
1050											80	13	46	0	10,029
1100 1150											80 80	13 13	45 45	0	11,047 11,882
1200 1250											80 80	13 13	45 45	0	12,969 13,893
1300											80	13	45	0	15,066
1350 1400											80 80	13 13	45 44	0	16,061 17,320
1450											80	13	44	0	18,385
1500 1600											80	13 13	44 44	0	19,731 22,299
1650											80	13	44	0	23,506
1700 1800											80 80	13 13	44 43	0	25,025 27,937
1900 1950											80 80	13 13	43 43	0	30,946 32,365
2000											80	13	43	0	34,143
2100 2200															
2250															
2300 2400															
2500															
2550 2600															
2700															
2800 2850															
2900															
3000 3100															
3150 3200															
3300															
3400 3450															
3600															
3800 4000															



> with internal vacuum rings, with external support ring

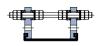
					Install	ation le	ength (L	_{-E}) at de	sign pre	essure					
		bar L _E =					bar L _E =					oar L _E =			
up to 6 bar $L_E = 500 \text{ mm}$ up to 10 bar $L_E = 550 \text{ mm}$					up to 6 bar $L_E = 550 \text{ mm}$ up to 10 bar $L_E = 600 \text{ mm}$						up to 6 bar $L_E = 600 \text{ mm}$ up to 10 bar $L_E = 650 \text{ mm}$				
	up to 10	Dai L _E =	וווווו טככ		higher pressures on request				αρ το 10 bai L _E — 030 iiiiii						
	Move	ement		Α			ement		А		Move	ment		Α	
14		M	\bowtie		_1~		M	\bowtie	اما	J/_		K.A	\bowtie	ĺΝ.	Ø
_M,	F	₩	₩ ±°		_M,	1	\sim	\sim		_M_	1	₩	\mathcal{M}	₩,	mm
mm 88	mm 13	±mm 61	0	cm ² 260	mm 106	mm 20	±mm 79	±°	cm ² 353	mm 124	mm 27	±mm 97	±°	cm ² 460	mm 100
88	13	60	0	337	106	20	77	0	441	124	27	95	0	560	125
88 88	13 13	59 58	0	423 539	106 106	20 20	76 75	0	539 670	124 124	27 27	93 92	0	670 814	150 175
88	13	56 57	0	625	106	20	73 74	0	765	124	27	91	0	919	200
88	13	56	0	866	106	20	72	0	1,029	124	27	89	0	1,207	250
88 88	13 13	55 54	0	1,158 1,500	106 106	20 20	71 70	0	1,346 1,713	124 124	27 27	88 86	0	1,548 1,940	300 350
88	13	54	0	1,840	106	20	69	0	2,075	124	27	85	0	2,324	400
88	13	53	0	2,248	106	20	69	0	2,507	124	27	84	0	2,781	450
88 88	13 13	52 52	0	2,688	106 106	20 20	68 67	0	2,971	124 124	27 27	84 83	0	3,267 3,761	500 550
88	13	52 52	0	3,137 3,685	106	20	67	0	3,442 4,015	124	27	83 82	0	4,359	600
88	13	51	0	4,208	106	20	66	0	4,560	124	27	82	0	4,927	650
88	13 13	51 51	0	4,852	106	20 20	66 66	0	5,230	124	27 27	81	0	5,621	700
88	13	50	0	5,437 6,179	106 106	20	65	0	5,836 6,604	124 124	27	81 80	0	6,249 7,044	750 800
88	13	50	0	6,822	106	20	65	0	7,268	124	27	80	0	7,729	850
88	13	50	0	7,651	106	20	64	0	8,123	124	27	79	0	8,610	900
88 88	13 13	49 49	0	8,365 9,280	106 106	20 20	64 64	0	8,858 9,799	124 124	27 27	79 79	0	9,366 10,333	950 1000
88	13	49	0	10,064	106	20	64	0	10,605	124	27	78	0	11,159	1050
88	13	49	0	11,085	106	20	63	0	11,652	124	27	78	0	12,233	1100
88 88	13 13	49 48	0	11,921 13,009	106 106	20 20	63 63	0	12,509 13,623	124 124	27 27	78 77	0	13,110 14,250	1150 1200
88	13	48	0	13,009	106	20	63	0	14,569	124	27	77 77	0	15,218	1250
88	13	48	0	15,109	106	20	62	0	15,770	124	27	77	0	16,445	1300
88	13 13	48	0	16,106	106	20	62	0	16,787	124	27	76 76	0	17,483	1350
88 88	13	48 48	0	17,366 18,433	106 106	20 20	62 62	0	18,074 19,162	124 124	27 27	76 76	0	18,796 19,906	1400 1450
88	13	47	0	19,781	106	20	62	0	20,536	124	27	76	0	21,305	1500
88	13	47	0	22,352	106	20	61	0	23,154	124	27	75	0	23,970	1600
88 88	13 13	47 47	0	23,561 25,081	106 106	20 20	61 61	0	24,384 25,930	124 124	27 27	75 75	0	25,221 26,793	1650 1700
88	13	47	0	27,996	106	20	61	0	28,893	124	27	74	0	29,804	1800
88	13	46	0	31,009	106	20	60	0	31,952	124	27	74	0	32,910	1900
88 88	13 13	46 46	0	32,429 34,209	106 106	20 20	60 60	0	33,394 35,199	124 124	27 27	74 74	0	34,373 36,204	1950 2000
88	13	46	0	37,565	106	20	60	0	38,603	124	27	73	0	39,655	2100
88	13	46	0	41,079	106	20	59	0	42,164	124	27	73	0	43,263	2200
88 88	13 13	46 46	0	42,712 44,750	106 106	20 20	59 59	0	43,818 45,882	124 124	27 27	73 73	0	44,938 47,028	2250 2300
88	13	46 45	0	48,578	106	20	59 59	0	49,757	124	27	73 72	0	50,950	2400
88	13	45	0	52,563	106	20	59	0	53,789	124	27	72	0	55,030	2500
88	13 13	45 45	0	54,408 56,706	106	20	59 50	0	55,655	124	27	72 72	0	56,917	2550
88 88	13	45 45	0	61,005	106 106	20 20	59 58	0	57,979 62,325	124 124	27 27	72 72	0	59,266 63,660	2600 2700
88	13	45	0	65,461	106	20	58	0	66,829	124	27	71	0	68,210	2800
88	13	45 45	0	67,518	106	20	58	0	68,906	124	27	71 71	0	70,309	2850
88 88	13 13	45 45	0	70,075 74,845	106 106	20 20	58 58	0	71,489 76,307	124 124	27 27	71 71	0	72,918 77,783	2900 3000
88	13	44	0	79,773	106	20	58	0	81,282	124	27	71	0	82,805	3100
88	13	44	0	82,041	106	20	58	0	83,571	124	27	71	0	85,116	3150
88 88	13 13	44 44	0	84,857 90,099	106 106	20 20	57 57	0	86,413 91,702	124 124	27 27	71 70	0	87,984 93,320	3200 3300
88	13	44	0	95,498	106	20	57	0	97,148	124	27	70	0	98,813	3400
88	13	44	0	97,979	106	20	57	0	99,650	124	27	70	0	101,336	3450
88 88	13 13	44 44	0	106,767 118,664	106 106	20 20	57 57	0	108,511 120,503	124 124	27 27	70 70	0	110,270 122,356	3600 3800
88	13	44	0	131,190	106	20	56	0	133,123	124	27	70 69	0	135,070	4000
				,											

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

> with embedded vacuum rings, with external support ring

					Install	ation le	ngth (L	_F) at de	sign pre	ssure					
			bar L _E =										oar L _E =		
		up to 10					up to 10	bar $L_E =$	450 mm			up to 10			
		Move	ement			_	higher pr Move		n request			Move	mont		
Ø	<u> </u>	IVIOVE		\bowtie	Â	<u>_</u> M_	WIOVE		\bowtie	Â	_1/_	WIOVE	illeilt }	\bowtie	Â
mm	mm m	mm	±mm	₩ ±°	cm ²	mm m	mm	±mm	₩ ±°	cm ²	mm m	mm	±mm	₩ ±°	cm ²
100 125	35 35	7 7	35 34	0	177 241	41 41	5 5	36 35	0	150 209	52 52	12 12	54 53	0	222 293
150 175	35 35	, 7 7	34 33	0	314 415	41	5	35 34	0	278 373	52 52	12	52 51	0	373
200	35	7	33	0	491	41	5	34	0	445	52	12	51	0	483 564
250 300	35 35	7 7	32 32	0	707 973	41 41	5 5	33 32	0	651 908	52 52	12 12	50 49	0	794 1,075
350 400	35 35	7 7	31 31	0	1,288 1,605	41 41	5 5	32 32	0	1,213 1,521	52 52	12 12	48 48	0	1,405 1,735
450 500	35 35	7 7	31 30	0	1,987 2,402	41 41	5 5	31 31	0	1,893 2,299	52 52	12 12	47 47	0	2,132 2,561
550 600			30		2,102	41	5 5	31 30	0	2,715 3,227	52 52	12 12	46 46	0	3,000 3,536
650						41	5	30	0	3,718	52	12	45	0	4,049
700 750						41 41	5 5	30 30	0	4,324 4,877	52 52	12 12	45 45	0	4,681 5,255
800 850						41 41	5 5	30 30	0	5,581 6,193	52 52	12 12	45 44	0	5,986 6,619
900 950						41 41	5 5	29 29	0	6,984 7,667	52 52	12 12	44 44	0	7,436 8,139
1000 1050						41	5	29	0	8,544	52 52	12 12	44 44	0	9,043 9,817
1100 1150											52 52	12	43	0	10,825
1200											52	12	43 43	0	11,652 12,728
1250 1300											52 52	12 12	43 43	0	13,643 14,806
1350 1400											52 52	12 12	43 42	0	15,792 17,041
1450 1500											52 52	12 12	42 42	0	18,098 19,433
1600 1650											52 52	12 12	42 42	0	21,983 23,181
1700											52	12	42	0	24,689
1800 1900											52 52	12 12	41 41	0	27,582 30,573
1950 2000											52 52	12 12	41 41	0	31,984 33,751
2100 2200															
2250 2300															
2400 2500															
2550 2600															
2700															
2800 2850															
2900 3000															
3100 3150															
3200 3300															
3400															
3450 3600															
3800 4000															

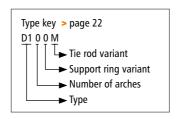
> with embedded vacuum rings, with external support ring

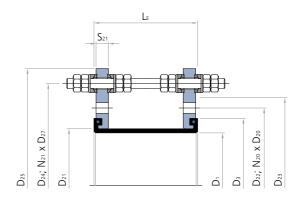

					Install	ation le	ngth (L	_{-E}) at de	sign pre	essure					
		bar L _E =					oar L _E =					oar L _E =			
up to 6 bar $L_E = 500 \text{ mm}$ up to 10 bar $L_E = 550 \text{ mm}$					up to 6 bar $L_E = 550 \text{ mm}$ up to 10 bar $L_E = 600 \text{ mm}$						up to 6 bar $L_{\epsilon} = 600 \text{ mm}$ up to 10 bar $L_{\epsilon} = 650 \text{ mm}$				
	up to 10	nai L _E —	330 IIIIII					n request	_		up to 10	nai L _E —	030 IIIII		
	Move	ement	_	Α			ment		Α		Move	ment	_	Α	
J/_		M	\bowtie	ĺм	_\^_		M	\bowtie	ĺ₩.	_1~		M	\bowtie	ĺМ.	Ø
-M-	F-71	\mathcal{M}	\sim	₩,	M.	F-71	\sim	\mathcal{M}	₩,	M.	F-7	\mathcal{M}	\mathcal{M}	₩,	
mm 58	mm 12	±mm 59	±° 0	cm ²	mm 70	mm 19	±mm 77	±°	cm ² 320	mm 82	mm 26	±mm 95	±°	cm ² 423	mm 100
58	12	58	0	305	70	19	75	0	405	82	26	93	0	519	125
58	12	57	0	387	70	19	74	0	499	82	26	91	0	625	150
58 58	12 12	56 55	0	499 581	70 70	19 19	73 72	0	625 716	82 82	26 26	90 89	0	765 866	175 200
58	12	54	0	814	70	19	71	0	973	82	26	87	0	1,146	250
58	12	53	0	1,099	70	19	69	0	1,282	82	26	86	0	1,479	300
58 58	12 12	52 52	0	1,432 1,765	70 70	19 19	69 68	0	1,640 1,995	82 82	26 26	85 84	0	1,863 2,240	350 400
58	12	51	0	2,165	70	19	67	0	2,419	82	26	83	0	2,688	450
58	12	51	0	2,597	70	19	66	0	2,875	82	26	82	0	3,167	500
58 58	12 12	50 50	0	3,039 3,578	70 70	19 19	66 65	0	3,339 3,904	82 82	26 26	81 81	0	3,653 4,243	550 600
58 58	12	50 50	0	3,578 4,094	70	19	65 65	0	3,904 4,441	82	26	81 80	0	4,243	650
58	12	49	0	4,729	70	19	64	0	5,102	82	26	79	0	5,489	700
58	12 12	49	0	5,307	70	19	64	0	5,701	82	26	79	0	6,110	750
58 58	12	49 48	0	6,041 6,677	70 70	19 19	64 63	0	6,461 7,118	82 82	26 26	78 78	0	6,896 7,574	800 850
58	12	48	0	7,497	70	19	63	0	7,964	82	26	78	0	8,446	900
58	12	48	0	8,203	70	19	63	0	8,692	82	26	77	0	9,195	950
58 58	12 12	48 47	0	9,110 9,887	70 70	19 19	62 62	0	9,625 10,423	82 82	26 26	77 77	0	10,153 10,973	1000 1050
58	12	47	0	10,899	70	19	62	0	11,461	82	26	76	0	12,037	1100
58	12	47	0	11,728	70	19	61	0	12,311	82	26	76	0	12,908	1150
58 58	12 12	47 47	0	12,808 13,726	70 70	19 19	61 61	0	13,417	82 82	26 26	76 75	0	14,040	1200 1250
58	12	47	0	14,892	70	19	61	0	14,356 15,548	82	26	75 75	0	15,001 16,218	1300
58	12	46	0	15,881	70	19	61	0	16,559	82	26	75	0	17,250	1350
58	12	46	0	17,134	70	19	60	0	17,837	82	26	75	0	18,554	1400
58 58	12 12	46 46	0	18,194 19,532	70 70	19 19	60 60	0	18,918 20,283	82 82	26 26	74 74	0	19,656 21,047	1450 1500
58	12	46	0	22,088	70	19	60	0	22,885	82	26	74	0	23,697	1600
58	12	46	0	23,289	70	19	60	0	24,108	82	26	73	0	24,941	1650
58 58	12 12	45 45	0	24,801 27,700	70 70	19 19	59 59	0	25,645 28,592	82 82	26 26	73 73	0	26,504 29,498	1700 1800
58	12	45	0	30,698	70	19	59	0	31,636	82	26	73	0	32,589	1900
58	12	45	0	32,111	70	19	59	0	33,071	82	26	72	0	34,045	1950
58 58	12 12	45 45	0	33,882 37,223	70 70	19 19	58 58	0	34,867 38,256	82 82	26 26	72 72	0	35,867 39,303	2000 2100
58	12	44	0	40,721	70	19	58	0	41,801	82	26	72 72	0	42,895	2200
58	12	44	0	42,346	70	19	58	0	43,447	82	26	71	0	44,563	2250
58	12	44	0	44,376	70	19	58 50	0	45,503	82	26	71 71	0	46,645	2300
58 58	12 12	44 44	0	48,188 52,158	70 70	19 19	58 57	0	49,363 53,379	82 82	26 26	71 71	0	50,551 54,615	2400 2500
58	12	44	0	53,995	70	19	57	0	55,238	82	26	71	0	56,495	2550
58	12	44	0	56,284	70	19	57	0	57,553	82	26	71	0	58,836	2600
58 58	12 12	44 43	0	60,568 65,008	70 70	19 19	57 57	0	61,883 66,371	82 82	26 26	70 70	0	63,213 67,748	2700 2800
58	12	43	0	67,058	70	19	57	0	68,442	82	26	70	0	69,840	2850
58	12	43	0	69,606	70	19	57	0	71,016	82	26	70	0	72,440	2900
58 58	12 12	43 43	0	74,361 79,273	70 70	19 19	56 56	0	75,818 80,777	82 82	26 26	70 69	0	77,289 82,295	3000 3100
58	12	43	0	81,534	70	19	56	0	83,060	82	26	69	0	84,599	3150
58	12	43	0	84,342	70	19	56	0	85,893	82	26	69	0	87,459	3200
58 58	12 12	43 43	0	89,568 94,951	70 70	19 19	56 56	0	91,166 96,597	82 82	26 26	69 69	0	92,779 98,256	3300 3400
58	12	43 43	0	94,951	70	19	56	0	99,091	82	26	69	0	100,772	3400
58	12	42	0	106,188	70	19	55	0	107,928	82	26	68	0	109,682	3600
58	12	42	0	118,054	70	19	55	0	119,888	82	26	68	0	121,736	3800
58	12	42	0	130,548	70	19	55	0	132,477	82	26	68	0	134,419	4000

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

Lateral expansion joints with swivel flange

Cylindrical Expansion Joints without Arch




D100M Ø 40 - 1,200 mm

> Type D100M

Cross section D100M

Lateral expansion joint without arch

Design: Streamlined, cylindrical rubber bellows with self-sealing rubber

bulges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges with tie rods borne in spherical washers. Optional with embedded support rings. In compliance with PED 2014/68/EU, FSA Technical Handbook and

ASTM F1123 - 87.

Diameters: Ø 40 to 1,200 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 254)

Custom length on request

Pressure: Up to 10 bar depending on diameter and length

Vacuum stability on request

Movement: For low lateral movements*

‡ (> page 254)

Application:
Plant construction,
sand/gravel extraction
industry, dredgers,
food processing e.g. as
suction/pressure hoses,
in conveying lines, on
pumps and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

^{*}Installation gap tolerances according to axial movement capability of the expansion joint

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single-part integral swivel backing flanges with clearance holes, groove to accommodate

the rubber bulges and tie rod holders (tie rod type B, E, C, M)

Single-part swivel backing flanges with clearance holes, groove to accommodate the rubber

bulges and tie rod gusset plates (tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective shield (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

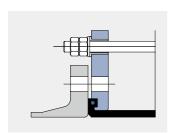
Tie rods

Design: Dimensioning according to design

pressure (test pressure) based on the

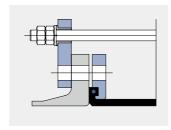
Pressure Equipment Directive

Materials: Carbon steel

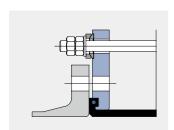

Stainless steel

Coating: Spherical washers/ball disks:

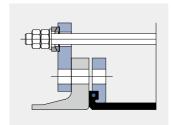
PTFE coated


Tie rods: galvanised, hot-dip galvanised or PTFE-coated

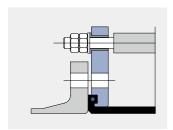
Example: Type D100M


Type D100B

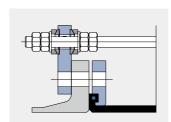
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D100R

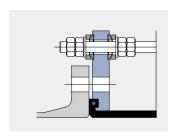
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D100E

Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type D100K

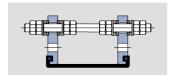
Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type D100C

Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces

Type D100L

Gusset plates: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

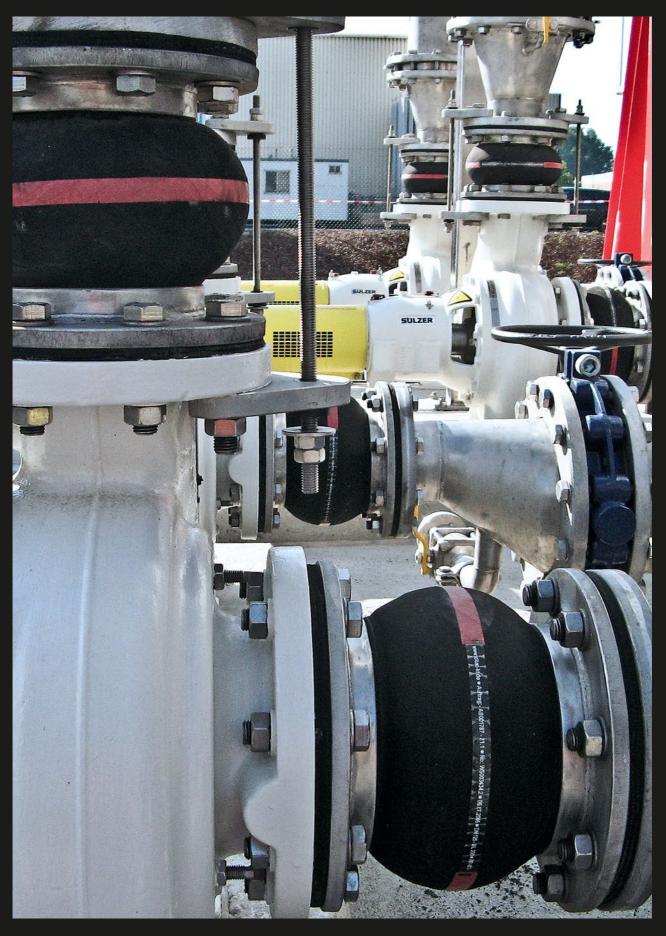


Type D100M

Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces

Lateral expansion joint, type U110R on the pump pressure side in a paper mill \varnothing 50 mm, 10 bar

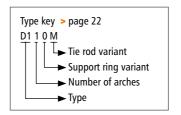
D100M > without arch


					Install	ation le	ngth (L	_E) at de	sign pre	essure					
		up to 10	bar L ₅ =	150 mm					200 mm			up to 10	bar L ₅ =	250 mm	
							higher pr	essures o	n request						
		Move	ment		۸			ment		4		Move	ment		
Ø	***			\(\frac{1}{2}\)	Â	₩			\(\frac{1}{2}\)	Â	₩			\(\frac{1}{2}\)	Â
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
40	8	5	12	0	10	10	6	16	0	10	13	8	20	0	10
50	8	5	11	0	16	10	6	15	0	16	13	8	19	0	16
65	8	5	11	0	28	10	6	14	0	28	13	8	18	0	28
80	8	5	10	0	43	10	6	14	0	43	13	8	17	0	43
100	8	5	10	0	69	10	6	13	0	69	13	8	17	0	69
125	8	5	10	0	115	10	6	13	0	115	13	8	16	0	115
150	8	5	9	0	170	10	6	12	0	170	13	8	15	0	170
200	8	5	9	0	278	10	6	12	0	278	13	8	14	0	278
250	8	5	8	0	449	10	6	11	0	449	13	8	14	0	449
300	8	5	8	0	656	10	6	11	0	656	13	8	13	0	656
350	8	5	8	0	855	10	6	10	0	855	13	8	13	0	855
400	8	5	8	0	1,195	10	6	10	0	1,195	13	8	13	0	1,195
450	8	5	7	0	1,514	10	6	10	0	1,514	13	8	12	0	1,514
500	8	5	7	0	1,886	10	6	10	0	1,886	13	8	12	0	1,886
600	8	5	7	0	2,706	10	6	9	0	2,706	13	8	12	0	2,706
700	8	5	7	0	3,750	10	6	9	0	3,750	13	8	11	0	3,750
800	8	5	7	0	4,914	10	6	9	0	4,914	13	8	11	0	4,914
900	8	5	6	0	6,193	10	6	9	0	6,193	13	8	11	0	6,193
1000	8	5	6	0	7,667	10	6	8	0	7,667	13	8	10	0	7,667
1100	8	5	6	0	9,297	10	6	8	0	9,297	13	8	10	0	9,297
1200	8	5	6	0	11,085	10	6	8	0	11,085	13	8	10	0	11,085

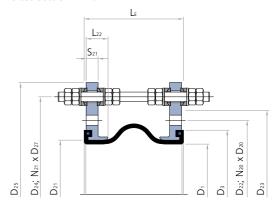
					Install	ation le	ngth (L	. _E) at de	sign pre	essure					
	up to 10	bar L ₅ =	300 mm			up to 10	bar L _E =	350 mm			up to 10	bar L _E =	400 mm		
								n request							
	Move	ment					ement				Move	ement			
Lal	100	ب کا	101	A	Lal	1,01	ب کا	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	Lal	101	ب کا	101	A	α
-[]-		K 71	[]		-[]-		K 7	$\overline{\mathbb{W}}$		-[]-		K 71	[]		Ø
mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm
15	9	24	0	10	18	11	28	0	10	20	12	32	0	10	40
15	9	23	0	16	18	11	27	0	16	20	12	30	0	16	50
15	9	22	0	28	18	11	25	0	28	20	12	29	0	28	65
15	9	21	0	43	18	11	24	0	43	20	12	28	0	43	80
15	9	20	0	69	18	11	23	0	69	20	12	27	0	69	100
15	9	19	0	115	18	11	22	0	115	20	12	25	0	115	125
15	9	18	0	170	18	11	21	0	170	20	12	24	0	170	150
15	9	17	0	278	18	11	20	0	278	20	12	23	0	278	200
15	9	17	0	449	18	11	19	0	449	20	12	22	0	449	250
15	9	16	0	656	18	11	19	0	656	20	12	21	0	656	300
15	9	15	0	855	18	11	18	0	855	20	12	21	0	855	350
15	9	15	0	1,195	18	11	18	0	1,195	20	12	20	0	1,195	400
15	9	15	0	1,514	18	11	17	0	1,514	20	12	20	0	1,514	450
15	9	14	0	1,886	18	11	17	0	1,886	20	12	19	0	1,886	500
15	9	14	0	2,706	18	11	16	0	2,706	20	12	19	0	2,706	600
15	9	13	0	3,750	18	11	16	0	3,750	20	12	18	0	3,750	700
15	9	13	0	4,914	18	11	15	0	4,914	20	12	18	0	4,914	800
15	9	13	0	6,193	18	11	15	0	6,193	20	12	17	0	6,193	900
15	9	13	0	7,667	18	11	15	0	7,667	20	12	17	0	7,667	1000
15	9	12	0	9,297	18	11	14	0	9,297	20	12	16	0	9,297	1100
15	9	12	0	11,085	18	11	14	0	11,085	20	12	16	0	11,085	1200

Larger movements see type D110M.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.



Universal and lateral expansion joint on a lye pump suction and discharge side \varnothing 125 mm, 5 bar


D110M Ø 20 - 1,200 mm

- > Type D110M without vacuum ring
- > Type D111M with internal vacuum ring
- > Type D112M with embedded vacuum ring

Cross section D110M

Lateral expansion joint with one arch

Design: Streamlined, single wide arch rubber bellows with self-sealing rub-

ber bulges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges with tie rods borne in spherical washers. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Diameters: \varnothing 20 to 1,200 mm, custom diameters possible

Length: Standard $L_E = 130 \text{ to } 350 \text{ mm} \ (> page 260–262)$

Custom length on request

Pressure: Up to 25 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Movement: For lateral and angular (2 tie rod design) movements*

Spring rate: Lateral spring rates (> page 296)

*Installation gap tolerances according to axial movement capability of the expansion joint

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/

Standard rubber bellows

Elastomer	Fabric	Marking	°C	Application
EPDM / EPDM	PEEK		-40 +130	Heating systems, cooling, hot air
IIR / EPDM	Polyamid		-40 +100	Drinking water, seawater, weak acids and alkalis
NBR / CR	Polyamid		-40 +100	Oils, fuels, gases
NBRweiß / CR	Polyamid		-40 +100	Fat containing food, weather resistant
CSM / CSM	Polyamid		-40 +100	Chemicals, aggresive chemical wastewater, weather resistant
NBR / CR	Polyamid		-40 +100	Oils, fuels, gases, LPG, blast furnace gas, lubricants
CR / CR	Polyamid	-	-40 +100	Cold- and hot water, seawater, wastewater with oleaginous corrosion protection
NBR / CR	Stahl		-40 +100	Oils, fuels, gases, fuel ethanol blends
NBR-LT / CR	Polyamid	LT	-40 +100	Oils, fuels, gases, LPG, for tanker and filling stations
HNBR / CR	Stahl		-40 +100	Oils, fuels, gases, LPG, for high Temperature
EPDM / EPDM	Polyamid		-40 +100	Seawater, weak acids and alkalis
IIR / EPDM	Polyamid		-40 +100	Seawater, weak acids and alkalis
BR	Polyamid		-40 +100	Sludge, dust or powder, liquids with solids, emulsions

Non-standard rubber bellows

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single-part integral swivel backing flanges with support collar, clearance holes, groove to

accommodate the rubber bulges and tie rod holders (tie rod type B, E, C, M)

Single-part swivel backing flanges with support collar, clearance holes, groove to accommodate

the rubber bulges and tie rod gusset plates (tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective shield (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement
D110M		None	Depending on the diameter up to 25 bar, vacuum stability on request	> page 260
D111M		Vacuum support ring spiral (1.4310) up to \varnothing 250 mm, vacuum ring starting at \varnothing 300 mm Medium contact, inside the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 261
D112M		No medium contact, embedded in the arch starting at \varnothing 100 mm	Depending on the diameter up to 16 bar, for vacuum up to 0.05 bar absolute	> page 262
Materials	;			
Stainless	steel	Carbon steel, embe	edded	

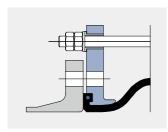
Tie rods

Example: Type D111M

Design: Dimensioning according to design

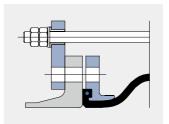
pressure (test pressure) based on the

Pressure Equipment Directive

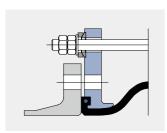

Materials: Carbon steel

Stainless steel

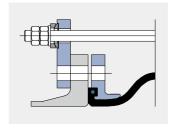
Coating: Spherical washers/ball disks:


PTFE coated

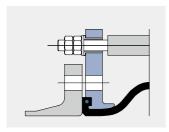
Tie rods: galvanised, hot-dip galvanised or PTFE-coated


Type D110B

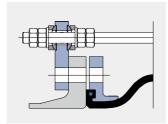
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D110R

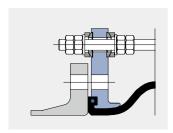
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D110E

Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type D110K

Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type D110C

Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces

Type D110L

Gusset plates:Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

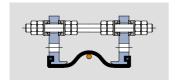
Type D110M

Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces

D110M

> without vacuum ring

					Install	ation le	ngth (L	_E) at de	sign pre	ssure					
		up to 10	bar L _E =	130 mm			up to 10	bar L =	150 mm			up to 10	bar L ₅ =	175 mm	
							_		n request						
		Move	ement					ment		_		Move	mont		
_,	11	I - I	1		A	11	I - I	10.	\ - <i>I</i>	A	11	I - I	10.	\ _ /	A
Ø	- 14	* *		\ \ \ \ \		- 1'4-		ΕV	 	MM	- 1'4-		ĮΫ́	 	MM
	\sim	\sim		\sim		\sim		174	\sim	لمما	\sim		174	\sim	لمرا
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
20	30		30		17										
25	30		30		17										
32	30		30		17										
40	30		30		18										
50 65	30		30 30		32 53										
80	30		30		85	30		30		85					
100	30		30		128	30		30		128					
125	30		30		187	30		30		187					
150	30		30		259	30		30		259					
200	30		30		410	50	50	50	Ŭ	255	30		30		410
250	30		30		596						30		30		596
300	30		30		822						31	10	17	0	903
350											31	10	17	0	1,134
400											31	10	17	0	1,521
450											31	10	17	0	1,878
500											31	10	17	0	2,290
600											31	10	16	0	3,187
700											31	10	16	0	4,312
800											31	10	16	0	5,555
900											31	10	16	0	6,910
1000											31	10	16	0	8,462
1100 1200											31 31	10 10	15 15	0	10,171
1200											5	10	13	U	12,037


					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar L ∈ =	200 mm			up to 10	bar L _E =	250 mm			up to 10	bar L _E =	275 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ement		Α		Move	ement		Α
Ø	***						₹		\Longrightarrow		***	₹		\Longrightarrow	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	40	20	26	0	564	44	20	29	0	573	44	20	29	0	573
250	40	20	26	0	799	44	20	28	0	809	44	20	28	0	809
300	30		30		822	44	20	27	0	1,081	44	20	27	0	1,081
350	50		30		907	44	20	27	0	1,333	44	20	27	0	1,333
400	50	30	30	0	1,018	44	20	27	0	1,750	44	20	27	0	1,750
450	50	30	30	0	2,116	50	30	30	0	2,042	44	20	26	0	2,132
500	50		30		1,692	40	20	30	0	2,279	44	20	26	0	2,570
600	50	30	30	0	3,078	40	20	30	0	3,115	44	20	26	0	3,515
700	40	20	24	0	4,669	50		30		4,342	50		30		4,342
800	40	20	23	0	5,958	50	30	30	0	5,274	44	20	25	0	5,986
900	40	20	23	0	7,359	44	20	25	0	7,390	44	20	25	0	7,390
1000	40	20	23	0	8,958	44	20	25	0	8,992	44	20	25	0	8,992
1100	40	20	23	0	10,715	44	20	24	0	10,751	44	20	24	0	10,751
1200	40	20	22	0	12,628	44	20	24	0	12,668	44	20	24	0	12,668

		Ins	tallatio	n lengt	h (L _E) at	t desigr	ı pressu	ire		
		up to 10	bar L ∈ =	300 mm			up to 10	bar L ∈ =	350 mm	
				high	er pressu	res on req	uest			
		Move	ment		Α		Move	ment		Α
Ø	***			\(\frac{1}{2}\)		***			\(\frac{1}{2}\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200 250	53 53	31 31	37 36	0	707 968	69 69	43 43	49 48	0	897 1,188
300	53	31	36	0	1,263	69	43	48 48	0	1,100
350	53	31	35	0	1,534	69	43	47	0	1,810
400	53	31	35	0	1,979	69	43	46	0	2,290
450	53	31	34	0	2,384	69	43	46	0	2,725
500	53	31	34	0	2,846	69	43	45	0	3,217
600	53	31	33	0	3,837	69	43	45	0	4,266
700	53	31	33	0	5,064	69	43	44	0	5,555
800	53	31	33	0	6,404	69	43	43	0	6,955
900	50		30		7,379	69	43	43	0	8,462
1000	50	30	30	0	8,894	69	43	43	0	10,171
1100	53	31	32	0	11,310	69	43	42	0	12,037
1200	53	31	31	0	13,273	69	43	42	0	14,061

Standard sizes
Non-standard sizes

In the event of lateral displacement and simultaneous axial extension (due to installation gap tolerance) the above movements are reduced (> page 29). For larger movements see type U120x.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

D111Mwith internal vacuum ring

					Install	ation le	ngth (L) at de	sign pre	essure					
		up to 10	bar L ₅ =	130 mm			up to 10	bar L ₅ =	150 mm			up to 10	bar L ₅ =	175 mm	
									n request				-		
		Move	ment				Move		request			Move	ement		
		IVIOVE	l -	. ,	Α.		IVIOVE	IIIeIII		Α.		IVIOVE	lineiit	. ,	Α.
Ø	→ ^		ĮΫ́	\Rightarrow		- M-		ĮΉ	\Leftrightarrow	M	- M-		¥Ή	\Leftrightarrow	
	M	\sim	\sim 4	\bowtie		M	$1 \sim 1$	\sim 4	\sim		\sim	1 - 1	\sim	\sim	1 - 1
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
20	30		30		17										
25	30		30		17										
32	30		30		17										
40	30		30		18										
50 65	30 30		30 30		32 53										
80	30		30		85	30	10	30		85					
100	30		30		128	30		30		128					
125	30		30		187	30		30		187					
150	30		30		259	30		30		259					
200	30		30		410						30	10	30	12	410
250	30		30		596						30		30		596
300	30		30		822						31	3	17	4	903
350											31	3	17	3	1,134
400											31	3	17	3	1,521
450											31	3	17	3	1,878
500											31	3	17	2	2,290
600											31	3	16	2	3,187
700											31	3	16	2	4,312
800											31 31	3	16 16	1	5,555
900 1000											31	3	16 16	1	6,910 8,462
1100											31	3	15	1	10,171
1200											31	3	15	1	12,037
1200											JI	5	13	1	12,037

					Install	ation le	ngth (L	at de	sign pre	essure					
		up to 10	bar $L_E =$	200 mm			up to 10	bar $L_E =$	250 mm			up to 10	bar L E =	275 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***			\times		***			\times		**	\(\frac{1}{2}\)		\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	40	7	26	11	564	44	7	29	11	573	44	7	29	11	573
250	40	7	26	9	799	44	7	28	9	809	44	7	28	9	809
300	30		30		822	44	7	27	8	1,081	44	7	27	8	1,081
350	50		30		907	44	7	27	7	1,333	44	7	27	7	1,333
400	50	10	30	8	1,018	44	7	27	6	1,750	44	7	27	6	1,750
450	50	30	30	5	2,116	50	30	30	6	2,042	44	7	26	5	2,132
500	50		30		1,692	40	7	30	5	2,279	44	7	26	5	2,570
600	50	10	30	8	3,078	40	7	30	4	3,115	44	7	26	4	3,515
700	40	7	24	3	4,669	50		30		4,342	50	10	30	8	4,342
800	40	7	23	3	5,958	50	30	30	8	5,274	44	7	25	3	5,986
900	40	7	23	3	7,359	44	7	25	3	7,390	44	7	25	3	7,390
1000	40	7	23	2	8,958	44	7	25	2	8,992	44	7	25	2	8,992
1100	40	7	23	2	10,715	44	7	24	2	10,751	44	7	24	2	10,751
1200	40	7	22	2	12,628	44	7	24	2	12,668	44	7	24	2	12,668

		Ins	tallatio	n lengt	h (L _E) at	t desigr	ı pressu	re		
		up to 10	bar $L_E =$	300 mm			up to 10	bar $L_E =$	350 mm	
				high	er pressu	res on req	uest			
		Move	ment		Α		Move	ment		Α
Ø	***			₩ ±°	Cm ²	***			±°	
mm 200	mm 53	mm 10	±mm 37	17	707	mm 69	mm 14	±mm 49	23	cm ² 897
250	53	10	36	14	968	69	14	48	19	1,188
300	53	10	36	12	1,263	69	14	48	16	1,514
350	53	10	35	10	1,534	69	14	47	14	1,810
400	53	10	35	9	1,979	69	14	46	12	2,290
450	53	10	34	8	2,384	69	14	46	11	2,725
500	53	10	34	7	2,846	69	14	45	10	3,217
600	53	10	33	6	3,837	69	14	45	8	4,266
700	53	10	33	5	5,064	69	14	44	7	5,555
800	53	10	33	4	6,404	69	14	43	6	6,955
900	50 10 30 5				7,379	69	14	43	6	8,462
1000	50 10 30 5				8,894	69	14	43	5	10,171
1100	53	10	32	3	11,310	69	14	42	5	12,037
1200	53	10	31	3	13,273	69	14	42	4	14,061

Standard sizes
Non-standard sizes

In the event of lateral displacement and simultaneous axial extension (due to installation gap tolerance) the above movements are reduced (> page 29). For larger movements see type U121x.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

D112M

> with embedded vacuum ring

					Install	ation le	ngth (L	_E) at de	sign pro	essure					
		up to 10	bar $L_E =$	130 mm			up to 10	bar $L_E =$	150 mm			up to 10	bar $L_E =$	175 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ement		Α		Move	ment		Α
Ø	→	₹		₩,		→	₹	\square	\tilde{\t		***	₹		\tilde{\t	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
20 25 32 40 50 65 80 100 125 150 200 250 300 350 400 450 500 600 700 800 900											20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 16 16 16 16 15 15 15	0 0 0 0 0 0 0 0	401 603 840 1.064 1.439 1.787 2.190 3.068 4.174 5.395 6.735 8.268
1000 1100 1200											20 20 20 20	2 2 2 2	15 15 14 14	0 0 0	

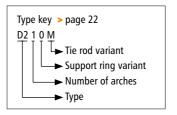
					Install	ation le	ngth (L) at de	sign pre	ssure					
		up to 10	bar L ∈ =	200 mm			up to 10	bar L _E =	250 mm			up to 10	bar L ∈ =	275 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	**	(*)		\times		**	(*)		₩		***	\(\frac{1}{2}\)		₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	26	6	25	0	515	29	6	28	0	531	29	6	28	0	531
250	26	6	25	0	740	29	6	27	0	760	29	6	27	0	760
300	26	6	24	0	1.001	29	6	27	0	1.024	29	6	27	0	1.024
350	26	6	24	0	1.244	29	6	26	0	1.269	29	6	26	0	1.269
400	26	6	24	0	1.647	29	6	26	0	1.676	29	6	26	0	1.676
450	26	6	23	0	2.019	29	6	26	0	2.051	29	6	26	0	2.051
500	26	6	23	0	2.445	29	6	25	0	2.481	29	6	25	0	2.481
600	26	6	23	0	3.370	29	6	25	0	3.411	29	6	25	0	3.411
700	26	6	23	0	4.525	29	6	25	0	4.572	29	6	25	0	4.572
800	26	6	22	0	5.795	29	6	24	0	5.849	29	6	24	0	5.849
900	26	6	22	0	7.178	29	6	24	0	7.238	29	6	24	0	7.238
1000	26 6 22 0 8.75					29	6	24	0	8.825	29	6	24	0	8.825
1100	26	6	22	0	10.496	29	6	24	0	10.568	29	6	24	0	10.568
1200	26	6	21	0	12.390	29	6	23	0	12.469	29	6	23	0	12.469

		Ins	tallatio	n lengt	h (L _E) at	t desigr	pressu	ire		
		up to 10	bar $L_E =$	300 mm			up to 10	bar $L_E =$	350 mm	
				high	er pressu	res on req	uest			
		Move	ment		Α		Move	ment		Α
Ø	***			$\overleftrightarrow{\bowtie}$		***			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	35	9	36	0	661	46	13	48	0	804
250	35	9	35	0	913	46	13	47	0	1.081
300	35	9	35	0	1.201	46	13	46	0	1.392
350	35	9	34	0	1.466	46	13	45	0	1.676
400	35	9	34	0	1.901	46	13	45	0	2.140
450	35	9	33	0	2.299	46	13	44	0	2.561
500	35	9	33	0	2.753	46	13	44	0	3.039
600	35	9	33	0	3.728	46	13	43	0	4.060
700	35	9	32	0	4.939	46	13	43	0	5.320
800	35	9	32	0	6.263	46	13	42	0	6.691
900	35	9	31	0	7.698	46	13	42	0	8.171
1000	35	9	31	0	9.331	46	13	41	0	9.852
1100	35	9	31	0	11.122	46	13	41	0	11.690
1200	35	9	31	0	13.070	46	13	41	0	13.685

Standard sizes Non-standard sizes

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). For larger movements see type D122x or D125x.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.



D112M lateral FPM rubber expansion joints of size \varnothing 400 mm with embedded vacuum ring and stainless backing flanges, tie-rods and bearings

D210M Ø 32 - 500 mm

- > Type D210M without vacuum ring
- > Type D211M with internal vacuum ring

Lateral expansion joint with one arch

Design: Streamlined, single arch rubber bellows with self-sealing rubber

bulges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges with tie rods borne in spherical washers. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Diameters: Ø 32 to 500 mm

Length: $L_E = 100 \text{ or } 110 \text{ mm (> page } 268-269)$

Custom length on request

Pressure: Up to 25 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Movement: For lateral and angular (2 tie rod design) movements*

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e. g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/

 $^{{}^{\}star}$ Installation gap tolerances according to axial movement capability of the expansion joint

Standard Rubber bellows

Elastomer	Fabric	Marking	°C	Application
EPDM / EPDM	PEEK		-40 +130	Heating systems acc. 4809, warm- and hot water
IIR / EPDM	Polyamid		-40 +100	Drinking water, seawater, weak acids and alkalis, weather-resistant
NBR / CR	Polyamid		-20 +90	Oil, gases, lubricants, natural gas
NBR weiß / CR	Polyamid		-20 +90	Oily and fatty food (in complinance with KTW and FDA)
CSM / CSM	Polyamid		-20 +100	Chemicals, corrosive chemical waste, air compressors with oil content
IIR / EPDM	Polyamid		-40 +90	Cold-and warm water, sea water, cooling water, weak acids, alcohol

Backing flanges

Design: Single-part integral swivel backing flanges with threaded holes, groove to accommodate the

rubber bulges and tie rod holders (tie rod type B, E, C, S)

Single-part swivel backing flanges with threaded holes, groove to accommodate the rubber

bulges and tie rod gusset plates (tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials:Carbon steel, stainless steelCoating:Galvanised, yellow-neutralized

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective shield (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Tie rods

Example: Type D210C

Design: Dimensioning according to design

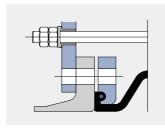
pressure (test pressure) based on the

Pressure Equipment Directive

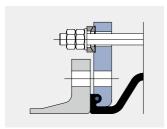
Materials: Carbon steel

Stainless steel

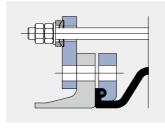
Coating: Spherical washers/ball disks:


PTFE coated

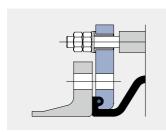
Tie rods: galvanised, hot-dip galvanised or PTFE-coated


Type D210B

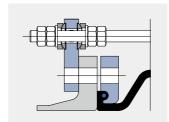
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D210R

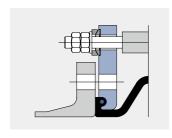
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D210E

Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type D210K

Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces

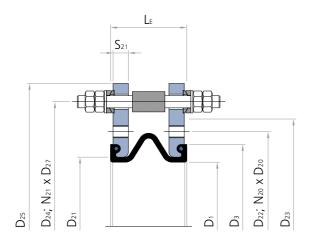

Type D210C

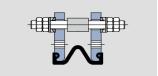
Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces

Type D210L

Gusset plates:Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

Type D210S


Tie rods mounted outside in spherical washers and ball disks and inside with compression sleeve to accommodate pressure/ vacuum thrust forces

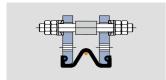


Support rings

TYPE	Support ring	Vacuum ring	Pressure	Movement
D210M		None	Depending on the diameter up to 25 bar, vacuum stability on request	> page 268
D211M		Vacuum spiral / ring, medium contact, inside the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 269
Materials	5			
Stainless	steel			

Cross section D210S

D210M> without vacuum ring


		Ins	tallatio	n lengt	h (L _E) at	t design	pressu	re		
		up to 10	bar L _E =	100 mm			up to 10	bar L ∈ =	110 mm	
				high	er pressu	res on req	uest			
		Move	ment		Α		Move	ment		Α
Ø	***			\rightleftharpoons		***			\rightleftharpoons	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
32	30	20	30	0	18					
40	30	20	30	0	18					
50	30	20	30	0	35					
65	30	20	30	0	56					
80	30	20	30	0	87					
100	30	20	30	0	130					
125	30	20	30	0	190					
150	30	20	30	0	263					
175	30	20	30	0	334					
200	30	20	30	0	416					
250	30	20	30	0	607					
300	30	20	30	0	830					
350	30	20	30	0	1,100					
400						30	20	30	0	1,385
500						30	20	30	0	2,091

Standard sizes

In the event of lateral displacement and simultaneous axial extension (due to installation gap tolerance) the above movements are reduced (> page 29).

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

D211Mwith internal vacuum ring

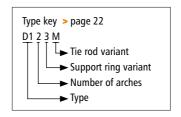
		Ins	tallatio	n lengt	h (L _E) at	desigr	pressu	re		
		up to 10	bar L ∈ =	100 mm			up to 10	bar L ∈ =	110 mm	
				high	er pressu	res on req	uest			
		Move	ment		Α		Move	ment		Α
Ø	***			$\overleftrightarrow{\Box}$		***			$\overleftrightarrow{\Xi}$	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
32	30	5	20	0	18					
40	30	5	20	0	18					
50	30	5	20	0	35					
65	30	5	20	0	56					
80	30	5	20	0	87					
100	30	5	20	0	130					
125	30	5	20	0	190					
150	30	5	20	0	263					
175	30	5	20	0	334					
200	30	5	20	0	416					
250	30	5	20	0	607					
300	30	5	20	0	830					
350	30	5	20	0	1,100					
400						30	5	20	0	1,385
500						30	5	20	0	2,091

Standard sizes

In the event of lateral displacement and simultaneous axial extension (due to installation gap tolerance) the above movements are reduced (> page 29).

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

Customised products available



Typical pump station arrangement with expansion joints to decouple pump vibrations from pipeline

D120M Ø 100 - 1,200 mm

- > Type D120M without vacuum rings
- > Type D121M with internal vacuum rings
- > Type D122M with embedded vacuum rings
- > Type D123M without vacuum rings, with external support ring
- > Type D124M with internal vacuum rings, with external support ring
- > Type D125M with embedded vacuum rings, with external support ring

Lateral expansion joint with two arches

Design: Streamlined, double wide arch rubber bellows with self-sealing rub-

ber bulges, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and swivel backing flanges with tie rods borne in spherical washers. Optional with vacuum rings and/or external support ring. In compliance with PED 2014/68/EU, FSA Technical

Handbook and ASTM F1123 - 87.

Diameters: \emptyset 100 to 1,200 mm, custom diameters possible

Length: Standard $L_E = 350$ to 650 mm (> page 274–276)

Custom length on request

Pressure: Up to 10 bar depending on diameter and length

Vacuum not allowed without vacuum rings, with vacuum rings up

to 0.05 bar absolute

Movement: For very large lateral and angular (2 tie rod design) movements*

\$ \tage 274-276)

Spring rate: To calculate the lateral spring rate for multiple arch joints, divide

our single arch values of type D110A by the number of arches

(> page 296)

*Installation gap tolerances according to axial movement capability of the expansion joint

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e. g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single-part integral swivel backing flanges with support collar, clearance holes, groove to

accommodate the rubber bulges and tie rod holders (tie rod type B, E, C, M)

Single-part swivel backing flanges with support collar, clearance holes, groove to accommodate

the rubber bulges and tie rod gusset plates (tie rod type R, K, L)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective shield (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

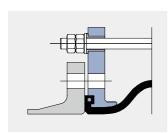
Filled arch:

Tie rods

Design: Dimensioning according to design

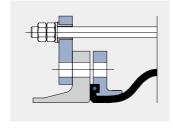
pressure (test pressure) based on the Pressure Equipment Directive

Materials: Carbon steel

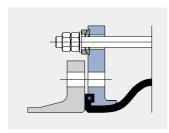

Stainless steel

Coating: Spherical washers/ball disks:

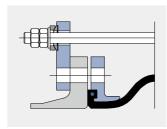
PTFE coated


Tie rods: galvanised, hot-dip galvanised or PTFE-coated

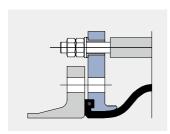
Example: Type D124M


Type D120B

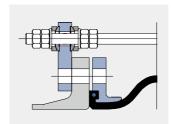
Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D120R

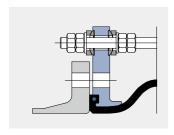
Gusset plates: Tie rods mounted outside in rubber bushing to accommodate pressure thrust forces


Type D120E

Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces


Type D120K

Gusset plates: Tie rods mounted outside in spherical washers and ball disks to accommodate pressure thrust forces

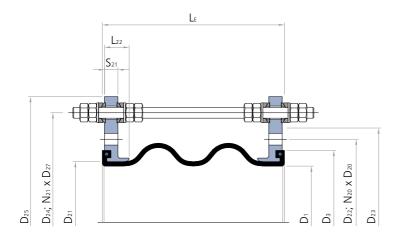

Type D120C

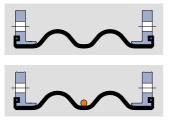
Tie rods mounted outside in rubber bushing and inside with compression sleeve to accommodate pressure/vacuum thrust forces

Type D120L

Gusset plates: Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/vacuum thrust forces

Type D120M


Tie rods mounted outside and inside in spherical washers and ball disks to accommodate pressure/ vacuum thrust forces



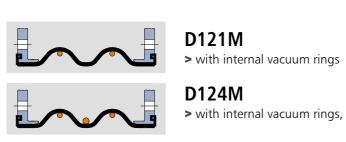
Support rings

TYPE	Support rings		Vacuum ring	Support ring	Pressure		Movement
D120M			None	None	Low press vacuum st on request	ability	> page 274
D121M			Medium contact, inside the arches	None	Low press for vacuun 0.05 bar a	n up to	> page 275
D122M			No medium contact, embedded in the arches	None	Low press for vacuun 0.05 bar a	n up to	> page 276
D123M			None	External betw the arches	een Depending the diame to 10 bar, vacuum	ter up	> page 274
D124M			Medium contact, inside the arches	External betw the arches	diameter up to 0.05 absolute	ip to vacuum	> page 275
D125M			No medium contact, embedded in the arches	External betw the arches	diameter u 10 bar, for up to 0.05 absolute	ip to vacuum	> page 276
Materials	5						
Stainless	steel	Carbon steel,	rubberised	(Carbon steel, emb	edded	

Cross section D120M

D120M> without vacuum rings

D123M


> without vacuum rings, with external support ring

					Install	ation le	ngth (L) at de	sign pre	ssure					
		up to 10	bar L _E =	350 mm			up to 10	bar L ∈ =	400 mm			up to 10	bar L ∈ =	450 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***			₩		***			\times		**	₹		\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	53	22	33	0	445	62	20	36	0	445	80	40	53	0	564
250	53	22	32	0	656	62	20	35	0	656	80	40	52	0	799
300	53	22	32	0	903	62	20	35	0	903	80	40	51	0	1,069
350	53	22	31	0	1,134	62	20	34	0	1,134	80	40	50	0	1,320
400	53	22	31	0	1,521	62	20	34	0	1,521	80	40	50	0	1,735
450	53	22	31	0	1,878	62	20	33	0	1,878	80	40	49	0	2,116
500	53	22	30	0	2,290	62	20	33	0	2,290	80	40	49	0	2,552
600	53	22	30	0	3,187	62	20	33	0	3,187	80	40	48	0	3,494
700	53	22	29	0	4,312	62	20	32	0	4,312	80	40	47	0	4,669
800	53	22	29	0	5,555	62	20	32	0	5,555	80	40	47	0	5,958
900	53	22	29	0	6,910	62	20	31	0	6,910	80	40	46	0	7,359
1000	53	22	29	0	8,462	62	20	31	0	8,462	80	40	46	0	8,958
1100	53	22	28	0	10,171	62	20	31	0	10,171	80	40	45	0	10,715
1200	53	22	28	0	12,037	62	20	31	0	12,037	80	40	45	0	12,628

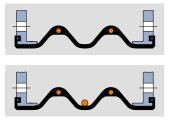
					Install	ation le	ngth (L	e) at de	sign pre	ssure					
		up to 10	bar L ∈ =	500 mm			up to 10	bar L ∈ =	550 mm			up to 10	bar L ∈ =	600 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		Α		Move	ment		Α
Ø	***	₹		\times		***	₹		₩		***	₹		\(\tau_{\tau}\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	88	41	57	0	573	106	61	74	0	707	124	82	91	0	855
250	88	41	56	0	809	106	61	72	0	968	124	82	89	0	1,140
300	88	41	55	0	1,081	106	61	71	0	1,263	124	82	88	0	1,459
350	88	41	54	0	1,333	106	61	70	0	1,534	124	82	86	0	1,750
400	88	41	54	0	1,750	106	61	69	0	1,979	124	82	85	0	2,223
450	88	41	53	0	2,132	106	61	69	0	2,384	124	82	84	0	2,651
500	88	41	52	0	2,570	106	61	68	0	2,846	124	82	84	0	3,137
600	88	41	52	0	3,515	106	61	67	0	3,837	124	82	82	0	4,174
700	88	41	51	0	4,693	106	61	66	0	5,064	124	82	81	0	5,450
800	88	41	50	0	5,986	106	61	65	0	6,404	124	82	80	0	6,837
900	88	41	50	0	7,390	106	61	64	0	7,854	124	82	79	0	8,332
1000	88	41	49	0	8,992	106	61	64	0	9,503	124	82	79	0	10,029
1100	88	41	49	0	10,751	106	61	63	0	11,310	124	82	78	0	11,882
1200	88	41	48	0	12,668	106	61	63	0	13,273	124	82	77	0	13,893

Recommended sizes Further possible sizes In the event of lateral displacement and simultaneous axial extension the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

> with internal vacuum rings, with external support ring

					Install	ation le	ngth (L	_E) at de	sign pre	essure					
		up to 10	bar L E =	350 mm			up to 10	bar $L_E =$	400 mm			up to 10	bar $L_E =$	450 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move	ment		А		Move	ment		Α
Ø	→			\(\tau_{\tau}\)	Ŵ	***			\(\tau_{\tau}\)	Â	***			\(\tau_{\tau}\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	53	7	33	0	445	62	7	36	0	445	80	13	53	0	564
250	53	7	32	0	656	62	7	35	0	656	80	13	52	0	799
300	53	7	32	0	903	62	7	35	0	903	80	13	51	0	1,069
350	53	7	31	0	1,134	62	7	34	0	1,134	80	13	50	0	1,320
400	53	7	31	0	1,521	62	7	34	0	1,521	80	13	50	0	1,735
450	53	7	31	0	1,878	62	7	33	0	1,878	80	13	49	0	2,116
500	53	7	30	0	2,290	62	7	33	0	2,290	80	13	49	0	2,552
600	53	7	30	0	3,187	62	7	33	0	3,187	80	13	48	0	3,494
700	53	7	29	0	4,312	62	7	32	0	4,312	80	13	47	0	4,669
800	53	7	29	0	5,555	62	7	32	0	5,555	80	13	47	0	5,958
900	53	7	29	0	6,910	62	7	31	0	6,910	80	13	46	0	7,359
1000	53	7	29	0	8,462	62	7	31	0	8,462	80	13	46	0	8,958
1100	53	7	28	0	10,171	62	7	31	0	10,171	80	13	45	0	10,715
1200	53	7	28	0	12,037	62	7	31	0	12,037	80	13	45	0	12,628


					Install	ation le	ngth (L	E) at de	sign pre	essure					
		up to 10	bar L ∈ =	500 mm			up to 10	bar L _E =	550 mm			up to 10	bar L ∈ =	600 mm	
							higher pr	essures o	n request						
		Move	ment		Α		Move			А		Move	ment		Α
Ø	***	₹		\times		***	₹		\times		***			\times	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	88	13	57	0	573	106	20	74	0	707	124	27	91	0	855
250	88	13	56	0	809	106	20	72	0	968	124	27	89	0	1,140
300	88	13	55	0	1,081	106	20	71	0	1,263	124	27	88	0	1,459
350	88	13	54	0	1,333	106	20	70	0	1,534	124	27	86	0	1,750
400	88	13	54	0	1,750	106	20	69	0	1,979	124	27	85	0	2,223
450	88	13	53	0	2,132	106	20	69	0	2,384	124	27	84	0	2,651
500	88	13	52	0	2,570	106	20	68	0	2,846	124	27	84	0	3,137
600	88	13	52	0	3,515	106	20	67	0	3,837	124	27	82	0	4,174
700	88	13	51	0	4,693	106	20	66	0	5,064	124	27	81	0	5,450
800	88	13	50	0	5,986	106	20	65	0	6,404	124	27	80	0	6,837
900	88	13	50	0	7,390	106	20	64	0	7,854	124	27	79	0	8,332
1000	88	13	49	0	8,992	106	20	64	0	9,503	124	27	79	0	10,029
1100	88	13	49	0	10,751	106	20	63	0	11,310	124	27	78	0	11,882
1200	88	13	48	0	12,668	106	20	63	0	13,273	124	27	77	0	13,893

Recommended sizes Further possible sizes In the event of lateral displacement and simultaneous axial extension the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

D122M> with embedded vacuum rings

D125M

> with embedded vacuum rings, with external support ring

	Installation length ($L_{\scriptscriptstyle E}$) at design pressure														
		up to 10	bar L _E =	350 mm			up to 10	bar L ∈ =	400 mm			up to 10	bar L ∈ =	450 mm	
							higher pr	essures o	sures on request						
		Move	ment		Α	Movement A					Movement A				
Ø	★			\times		***			\(\tau_{\tau}\)	Â	***			\(\tau_{\tau}\)	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	35	7	33	0	445	41	5	34	0	401	52	12	51	0	515
250	35	7	32	0	656	41	5	33	0	603	52	12	50	0	740
300	35	7	32	0	903	41	5	32	0	840	52	12	49	0	1,001
350	35	7	31	0	1,134	41	5	32	0	1,064	52	12	48	0	1,244
400	35	7	31	0	1,521	41	5	32	0	1,439	52	12	48	0	1,647
450	35	7	31	0	1,878	41	5	31	0	1,787	52	12	47	0	2,019
500	35	7	30	0	2,290	41	5	31	0	2,190	52	12	47	0	2,445
600	35	7	30	0	3,187	41	5	30	0	3,068	52	12	46	0	3,370
700	35	7	29	0	4,312	41	5	30	0	4,174	52	12	45	0	4,525
800	35	7	29	0	5,555	41	5	30	0	5,398	52	12	45	0	5,795
900	35	7	29	0	6,910	41	5	29	0	6,735	52	12	44	0	7,178
1000	35	7	29	0	8,462	41	5	29	0	8,268	52	12	44	0	8,758
1100	35	7	28	0	10,171	41	5	29	0	9,958	52	12	43	0	10,496
1200	35	7	28	0	12,037	41	5	29	0	11,805	52	12	43	0	12,390

	Installation length ($L_{\scriptscriptstyle{E}}$) at design pressure														
		up to 10	bar L ∈ =	500 mm		up to 10 bar $L_E = 550 \text{ mm}$					up to 10 bar $L_E = 600 \text{ mm}$				
	higher pressures on request														
	Movement A						Movement A					Movement			
Ø	*	*		\times		***	₹	\square	₩		***			₩	
mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	58	12	55	0	531	70	19	72	0	661	82	26	89	0	804
250	58	12	54	0	760	70	19	71	0	913	82	26	87	0	1,081
300	58	12	53	0	1,024	70	19	69	0	1,201	82	26	86	0	1,392
350	58	12	52	0	1,269	70	19	69	0	1,466	82	26	85	0	1,676
400	58	12	52	0	1,676	70	19	68	0	1,901	82	26	84	0	2,140
450	58	12	51	0	2,051	70	19	67	0	2,299	82	26	83	0	2,561
500	58	12	51	0	2,481	70	19	66	0	2,753	82	26	82	0	3,039
600	58	12	50	0	3,411	70	19	65	0	3,728	82	26	81	0	4,060
700	58	12	49	0	4,572	70	19	64	0	4,939	82	26	79	0	5,320
800	58	12	49	0	5,849	70	19	64	0	6,263	82	26	78	0	6,691
900	58	12	48	0	7,238	70	19	63	0	7,698	82	26	78	0	8,171
1000	58	12	48	0	8,825	70	19	62	0	9,331	82	26	77	0	9,852
1100	58	12	47	0	10,568	70	19	62	0	11,122	82	26	76	0	11,690
1200	58	12	47	0	12,469	70	19	61	0	13,070	82	26	76	0	13,685

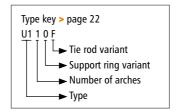
Recommended sizes Further possible sizes In the event of lateral displacement and simultaneous axial extension (due to installation gap tolerance) the above movements are reduced (> page 29). Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

Double arch EPDM rubber expansion joints \varnothing 500 mm with stainless steel swivel flanges, for permanent vacuum operation in a paper mill

Angular expansion joints with full faced rubber flange

Single Arch Expansion Joints


J110F Angular expansion joint with one arch

> 280

U110F Ø 100 - 4,000 mm

- > Type U110F without vacuum ring
- > Type U111F with internal vacuum ring
- > Type U112F with embedded vacuum ring

Angular expansion joint with one arch

Design: Streamlined, single wide arch rubber bellows with full faced rubber

flanges, designed to compensate angular movement in one plane only, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single-part backing flanges connected over a pair of hinge plates and pins. Optional with vacuum ring. In compliance with PED 2014/68/EU, FSA Technical Handbook and

ASTM F1123 - 87.

Diameters: Ø 100 to 4,000 mm, custom diameters possible

Length: Standard $L_E = 150$ to 400 mm (> page 283–285)

Custom length on request

Pressure: Up to 25 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Movement: For angular movements

(> page 283–285)

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

available starting at \varnothing 300 mm. Take the restriction of the listed movement into account (> page 283–285)

Backing flanges

Single-part, oval backing flanges with support collar, clearance holes, consisting of a pair Design:

of hinge plates connected with pins (type F)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

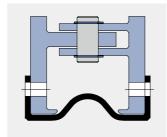
Fire protective shield (> page 58)

Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:


Hinge

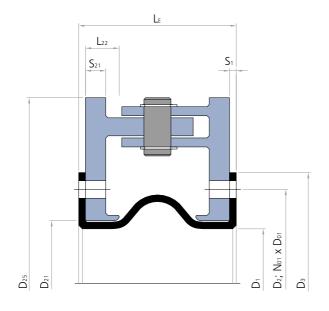
Design: Dimensions according to design

pressure (test pressure)

Materials: Carbon steel, stainless steel

Coating: Galvanised or hot-dip galvanised

Type U110F


Hinge for angular movements on one plane with plates and pins to absorb the reaction forces from pressure and vacuum.

Rotation axis in the center of the installation gap

Support rings

TYPE	Support rings	Vacuum ring	Pressure	Movement			
U110F		None	Depending on the diameter up to 25 bar, vacuum stability on request	> page 283			
U111F		Medium contact, inside the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 284			
U112F		No medium contact, embedded in the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 285			
Materials	5						
Stainless	steel	Carbon steel, rubberised	Carbon steel, embe	Carbon steel, embedded			

Cross section U110F

	Installation length (L _E) depending on design pressure												
	up to 10 bar		up to 10) bar	up to 1	0 bar	up to 10	0 bar	up to 10		up to 10 bar		
	$L_{\rm E} = 150$	mm	$L_E = 200$	L _E = 200 mm		L _E = 250 mm		$L_E = 300 \text{ mm}$) mm	$L_E = 40$	0 mm	
	Movement		Movement		Movement		Movement		Movement		Movement		
Ø	\swarrow	A HM	\bowtie	A HM	\bowtie	Å	\bowtie	Å	\bowtie	A HM	\bowtie	A	
mm	±°	cm ²	₩ ±°	cm ²	₩ ±°	cm ²	₩ ±°	cm ²	₩ ±°	cm ²	₩ ±°	cm ²	
100	22.3	177	31.0	254	32.6	260	40	353	48.2	491	52.6	616	
125 150	18.2 15.3	241 314	25.6 21.8	330 415	27.1 23.1	337 423	33.9 29.2	441 539	41.9 36.7	594 707	46.3 41.1	731 855	
175	13.2	415	18.9	531	20.1	539	25.6	670	32.6	855	36.8	1,018	
200	11.6	491 707	16.7	616	17.7	625	22.8	765	29.2	962	33.2	1,134	
250 300	9.3 7.8	973	13.5 11.3	855 1,146	14.4 12	866 1,158	18.6 15.6	1,029 1,346	24.1 20.5	1,257 1,605	27.7 23.6	1,452 1,825	
350	6.7	1,288	9.7	1,486	10.4	1,500	13.5	1,713	17.7	2,003	20.5	2,248	
400 450	5.9 5.2	1,605 1,987	8.5 7.6	1,825 2,231	9.1 8.1	1,840 2,248	11.9 10.6	2,075 2,507	15.6 14	2,393 2,856	18.1 16.2	2,660 3,147	
500	4.7	2,402	6.8	2,669	7.3	2,688	9.5	2,307	12.6	3,349	14.7	3,664	
550	4.3	2,827	6.2	3,117	6.6	3,137	8.7	3,442	11.5	3,848	13.4	4,185	
600 650	3.9 3.6	3,349 3,848	5.7 5.3	3,664 4,185	6.1 5.6	3,685 4,208	8 7.4	4,015 4,560	10.6 9.8	4,453 5,027	12.3 11.4	4,815 5,411	
700	3.4	4,465	4.9	4,163	5.0	4,208	6.8	5,230	9.0	5,728	10.6	6,138	
750	3.1	5,027	4.6	5,411	4.9	5,437	6.4	5,836	8.5	6,362	9.9	6,793	
800 850	2.9 2.8	5,741 6,362	4.3 4.0	6,151 6,793	4.6 4.3	6,179 6,822	6 5.6	6,604 7,268	8 7.5	7,163 7,854	9.3 8.8	7,620 8,332	
900	2.6	7,163	3.8	7,620	4.1	7,651	5.3	8,123	7.5 7.1	8,742	8.3	9,246	
950	2.5	7,854	3.6	8,332	3.9	8,365	5.1	8,858	6.7	9,503	7.9	10,029	
1000 1050	2.3 2.2	8,742 9,503	3.4	9,246 10,029	3.7 3.5	9,280 10,064	4.8 4.6	9,799	6.4	10,477 11,310	7.5	11,029 11,882	
1100	2.2	10,496	3.3 3.1	11,047	3.3	11,085	4.6	10,605 11,652	6.1 5.8	12,390	7.1 6.8	12,989	
1150	2.0	11,310	3.0	11,882	3.2	11,921	4.2	12,509	5.6	13,273	6.5	13,893	
1200	2.0	12,370	2.9	12,969	3.1	13,009	4	13,623	5.3	14,420	6.2	15,066	
1250 1300	1.9 1.8	13,273 14,420	2.7 2.6	13,893 15,066	2.9 2.8	13,935 15,109	3.8 3.7	14,569 15,770	5.1 4.9	15,394 16,627	6 5.8	16,061 17,320	
1350	1.7	15,394	2.5	16,061	2.7	16,106	3.6	16,787	4.7	17,671	5.5	18,385	
1400	1.7	16,627	2.5	17,320	2.6	17,366	3.4	18,074	4.6	18,991	5.3	19,731	
1450 1500	1.6 1.6	17,671 18,991	2.4 2.3	18,385 19,731	2.5 2.4	18,433 19,781	3.3 3.2	19,162 20,536	4.4 4.3	20,106 21,512	5.2 5	20,867 22,299	
1600	1.5	21,512	2.1	22,299	2.3	22,352	3	23,154	4	24,190	4.7	25,025	
1650 1700	1.4	22,698	2.1 2.0	23,506	2.2 2.2	23,561	2.9 2.8	24,384	3.9	25,447	4.5	26,302 27,907	
1800	1.4 1.3	24,190 27,055	1.9	25,025 27,937	2.2	25,081 27,996	2.8	25,930 28,893	3.8 3.6	27,026 30,049	4.4 4.2	30,978	
1900	1.2	30,018	1.8	30,946	1.9	31,009	2.5	31,952	3.4	33,168	3.9	34,143	
1950 2000	1.2 1.2	31,416 33,168	1.8 1.7	32,365 34,143	1.9 1.8	32,429 34,209	2.5 2.4	33,394 35,199	3.3 3.2	34,636 36,474	3.8 3.7	35,633 37,497	
2100	1.1	36,474	1.6	37,497	1.7	37,565	2.4	38,603	3.1	39,938	3.6	41,007	
2200	1.1	39,938	1.6	41,007	1.7	41,079	2.2	42,164	2.9	43,558	3.4	44,675	
2250 2300	1.0 1.0	41,548 43,558	1.5 1.5	42,638 44,675	1.6 1.6	42,712 44,750	2.1 2.1	43,818 45,882	2.8 2.8	45,239 47,336	3.3 3.3	46,377 48,500	
2400	1.0	47,336	1.4	48,500	1.5	48,578	2.1	49,757	2.7	51,271	3.3	52,482	
2500	0.9	51,271	1.4	52,482	1.5	52,563	1.9	53,789	2.6	55,363	3	56,621	
2550 2600	0.9 0.9	53,093 55,363	1.3 1.3	54,325 56,621	1.4 1.4	54,408 56,706	1.9 1.9	55,655 57,979	2.5 2.5	57,256 59,612	2.9 2.9	58,535 60,917	
2700	0.9	59,612	1.3	60,917	1.4	61,005	1.8	62,325	2.4	64,018	2.8	65,370	
2800	0.8	64,018	1.2	65,370	1.3	65,461	1.7	66,829	2.3	68,581	2.7	69,981	
2850 2900	0.8 0.8	66,052 68,581	1.2 1.2	67,426 69,981	1.3 1.3	67,518 70,075	1.7 1.7	68,906 71,489	2.3 2.2	70,686 73,301	2.6 2.6	72,107 74,748	
3000	0.8	73,301	1.1	74,748	1.2	74,845	1.6	76,307	2.1	78,179	2.5	79,673	
3100	0.8	78,179	1.1	79,673	1.2	79,773	1.6	81,282	2.1	83,213	2.4	84,754	
3150 3200	0.7 0.7	80,425 83,213	1.1 1.1	81,940 84,754	1.2 1.1	82,041 84,857	1.5 1.5	83,571 86,413	2 2	85,530 88,405	2.4 2.3	87,092 89,993	
3300	0.7	88,405	1.0	89,993	1.1	90,099	1.5	91,702	1.9	93,753	2.3	95,388	
3400	0.7	93,753	1.0	95,388	1.1	95,498	1.4	97,148	1.9	99,259	2.2	100,941	
3450 3600	0.7 0.7	96,211 104,922	1.0 1.0	97,868 106,651	1.1 1	97,979 106,767	1.4 1.3	99,650 108,511	1.9 1.8	101,788 110,741	2.2 2.1	103,491 112,518	
3800	0.6	116,718	0.9	118,542	1	118,664	1.3	120,503	1.7	122,852	2	124,723	
4000	0.6	129,143	0.9	131,061	0.9	131,190	1.2	133,123	1.6	135,591	1.9	137,556	

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: angular movement: -66 %.

Up to 10 bar L _c = 150 mm	up to 10 bar $L_{\epsilon} = 400 \text{ mm}$ Movement \pm° cm 43.5 37.2 32.3 28.5 1,0 25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,6 11.9 3,1 10.8 9.8 4,1 9.0 4,8 9.0 4,8 7.7 6,1
Movement	±° cm 43.5 37.2 32.3 28.5 1,0 25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 9,8 4,1 9.0 4,8 9.0 8,3 7.7 6,1
Martin	±° cm 43.5 37.2 32.3 28.5 1,0 25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 9,8 4,1 9.0 4,8 9.0 8,3 7.7 6,1
mm ±° cm² t° cm²	43.5 6 37.2 7 32.3 8 28.5 1,0 25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
100	43.5 6 37.2 7 32.3 8 28.5 1,0 25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
150 12.8 314 17.4 415 18.8 423 22.8 539 29.0 707 175 11.0 415 15.0 531 16.2 539 19.8 670 25.4 855 200 96 491 13.2 616 14.3 625 17.5 765 22.5 962 250 7.7 707 10.6 855 11.5 866 14.1 1,029 18.4 1,257 300 6.5 973 8.9 1,146 9.6 1,158 11.9 1,346 15.5 1,605 350 5.5 1,288 7.6 1,485 8.3 1,500 10.2 1,713 13.33 2,003 450 4.3 1,987 6.0 2,231 6.5 2,448 8.0 2,507 10.5 2,856 500 3.9 2,402 5.4 2,669 5.8 2,688 7.2 2,971 9,4	32.3 8 28.5 1,0 25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
175 11.0 415 15.0 531 16.2 539 19.8 670 25.4 855 200 9.6 491 13.2 616 14.3 625 17.5 765 22.5 962 250 7.7 707 10.6 855 11.5 866 14.1 1.029 18.4 1,257 300 6.5 973 8.9 1,146 9.6 1,158 11.9 1,346 15.5 1,605 350 5.5 1,288 7.6 1,486 8.3 1,500 10.2 1,713 13.3 2,003 400 4.9 1,605 6.7 1,825 7.3 1,840 9.0 2,075 10.5 2,856 500 3.9 2,402 5.4 2,669 5.8 2,688 7.2 2,971 9.4 3,349 550 3.5 2,827 4.9 3,117 5.3 3,137 6.5 3,442 8.6	28.5 1,0 25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
200 9.6 491 13.2 616 14.3 625 17.5 765 22.5 962 250 7.7 707 10.6 855 11.5 866 14.1 1,029 18.4 1,257 300 6.5 973 8.9 1,146 9.6 1,158 11.9 1,346 15.5 1,605 350 5.5 1,288 7.6 1,486 8.3 1,500 10.2 1,713 13.3 2,003 400 4.9 1,605 6.7 1,825 7.3 1,840 9.0 2,075 11.7 2,393 450 4.3 1,987 6.0 2,231 6.5 2,248 8.0 2,507 10.5 2,856 500 3.5 2,827 4.9 3,117 5.3 3,137 6.5 3,442 8.6 3,848 600 3.2 3,349 4.5 3,664 4.9 3,685 6.0 4,015 7.9	25.4 1,1 20.8 1,4 17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
300 6.5 973 8.9 1,146 9.6 1,158 11.9 1,346 15.5 1,605 350 5.5 1,288 7.6 1,486 8.3 1,500 10.2 1,713 13.3 2,003 400 4,9 1,605 6.7 1,825 7.3 1,840 9.0 2,075 11.7 2,393 450 4.3 1,987 6.0 2,231 6.5 2,248 8.0 2,507 10.5 2,856 500 3.9 2,402 5.4 2,669 5.8 2,688 7.2 2,971 9.4 3,349 550 3.5 2,827 4.9 3,117 5.3 3,137 6.5 3,442 8.6 3,848 600 3.2 3,349 4.5 3,664 4.9 3,685 6.0 4,015 7.9 4,453 750 2.6 5,027 3.6 5,411 3.9 5,437 4.8 5,836 6.	17.6 1,8 15.2 2,2 13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
350 5.5 1,288 7.6 1,486 8.3 1,500 10.2 1,713 13.3 2,003 400 4.9 1,605 6.7 1,825 7.3 1,840 9.0 2,075 11.7 2,393 450 4.3 1,987 6.0 2,231 6.5 2,248 8.0 2,507 10.5 2,856 500 3.9 2,402 5.4 2,669 5.8 2,688 7.2 2,971 9.4 3,349 550 3.5 2,827 4.9 3,117 5.3 3,137 6.5 3,442 8.6 3,848 600 3.2 3,349 4.5 3,664 4.9 3,665 6.0 4,015 7.9 4,453 3.0 3,848 4.1 4,185 4.5 4,208 5.5 4,560 7.3 5,027 700 2.8 4,465 3.8 4,827 4.2 4,852 5.1 5,230 6.8 5,	15.2 2,2 13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
400	13.4 2,6 11.9 3,1 10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
500 3.9 2,402 5.4 2,669 5.8 2,688 7.2 2,971 9.4 3,349 550 3.5 2,827 4.9 3,117 5.3 3,137 6.5 3,442 8.6 3,848 600 3.2 3,349 4.5 3,664 4.9 3,685 6.0 4,015 7.9 4,453 650 3.0 3,848 4.1 4,185 4.5 4,208 5.5 4,560 7.3 5,027 700 2.8 4,465 3.8 4,827 4.2 4,852 5.1 5,230 6.8 5,728 750 2.6 5,027 3.6 5,411 3.9 5,437 4.8 5,836 6.3 6,362 800 2.4 5,741 3.4 6,151 3.6 6,179 4.5 6,604 5.9 7,163 850 2.3 6,362 3.2 7,651 4.0 8,123 5.3 8,742	10.8 3,6 9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
550 3.5 2,827 4.9 3,117 5.3 3,137 6.5 3,442 8.6 3,848 600 3.2 3,349 4.5 3,664 4.9 3,685 6.0 4,015 7.9 4,453 650 3.0 3,848 4.1 4,185 4.5 4,208 5.5 4,560 7.3 5,027 700 2.8 4,465 3.8 4,827 4.2 4,852 5.1 5,230 6.8 5,728 750 2.6 5,027 3.6 5,411 3.9 5,437 4.8 5,836 6.3 6,362 800 2.4 5,741 3.4 6,151 3.6 6,179 4.5 6,604 5.9 7,163 850 2.3 6,362 3.2 6,793 3.4 6,822 4.2 7,268 5.6 7,854 900 2.2 7,163 3.0 7,620 3.2 7,651 4.0 8,123 5.3 <th>9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1</th>	9.8 4,1 9.0 4,8 8.3 5,4 7.7 6,1
600 3.2 3,349 4.5 3,664 4.9 3,685 6.0 4,015 7.9 4,453 650 3.0 3,848 4.1 4,185 4.5 4,208 5.5 4,560 7.3 5,027 700 2.8 4,465 3.8 4,827 4.2 4,852 5.1 5,230 6.8 5,728 750 2.6 5,027 3.6 5,411 3.9 5,437 4.8 5,836 6.3 6,362 800 2.4 5,741 3.4 6,151 3.6 6,179 4.5 6,604 5.9 7,163 850 2.3 6,362 3.2 6,6793 3.4 6,822 4.2 7,268 5.6 7,854 900 2.2 7,163 3.0 7,620 3.2 7,651 4.0 8,123 5.3 8,742 950 2.0 7,854 2.8 8,332 3.1 8,365 3.8 8,858 5.0 </th <th>9.0 4,8 8.3 5,4 7.7 6,1</th>	9.0 4,8 8.3 5,4 7.7 6,1
650 3.0 3,848 4.1 4,185 4.5 4,208 5.5 4,560 7.3 5,027 700 2.8 4,465 3.8 4,827 4.2 4,852 5.1 5,230 6.8 5,728 750 2.6 5,027 3.6 5,411 3.9 5,437 4.8 5,836 6.3 6,362 800 2.4 5,741 3.4 6,151 3.6 6,179 4.5 6,604 5.9 7,163 850 2.3 6,362 3.2 6,793 3.4 6,822 4.2 7,268 5.6 7,854 900 2.2 7,163 3.0 7,620 3.2 7,651 4.0 8,123 5.3 8,742 950 2.0 7,854 2.8 8,332 3.1 8,365 3.8 8,858 5.0 9,503 1000 1.9 9,503 2.6 10,029 2.8 10,064 3.4 10,605 4.	8.3 5,4 7.7 6,1
750 2.6 5,027 3.6 5,411 3.9 5,437 4.8 5,836 6.3 6,362 800 2.4 5,741 3.4 6,151 3.6 6,179 4.5 6,604 5.9 7,163 850 2.3 6,362 3.2 6,793 3.4 6,822 4.2 7,268 5.6 7,854 900 2.2 7,163 3.0 7,620 3.2 7,651 4.0 8,123 5.3 8,742 950 2.0 7,854 2.8 8,332 3.1 8,365 3.8 8,858 5.0 9,503 1000 1.9 8,742 2.7 9,246 2.9 9.280 3.6 9,799 4.7 10,477 1050 1.9 9,503 2.6 10,029 2.8 10,064 3.4 10,605 4.5 11,310 1100 1.8 10,496 2.4 11,047 2.7 11,085 3.3 11,652	
800 2.4 5,741 3.4 6,151 3.6 6,179 4.5 6,604 5.9 7,163 850 2.3 6,362 3.2 6,793 3.4 6,822 4.2 7,268 5.6 7,854 900 2.2 7,163 3.0 7,620 3.2 7,651 4.0 8,123 5.3 8,742 950 2.0 7,854 2.8 8,332 3.1 8,365 3.8 8,858 5.0 9,503 1000 1.9 8,742 2.7 9,246 2.9 9,280 3.6 9,799 4.7 10,477 1050 1.9 9,503 2.6 10,029 2.8 10,064 3.4 10,605 4.5 11,310 1100 1.8 10,496 2.4 11,047 2.7 11,085 3.3 11,652 4.3 12,390 1150 1.7 11,310 2.3 11,882 2.5 11,921 3.1 12,509	
850 2.3 6,362 3.2 6,793 3.4 6,822 4.2 7,268 5.6 7,854 900 2.2 7,163 3.0 7,620 3.2 7,651 4.0 8,123 5.3 8,742 950 2.0 7,854 2.8 8,332 3.1 8,365 3.8 8,858 5.0 9,503 1000 1.9 8,742 2.7 9,246 2.9 9,280 3.6 9,799 4.7 10,477 1050 1.9 9,503 2.6 10,029 2.8 10,064 3.4 10,605 4.5 11,310 1100 1.8 10,496 2.4 11,047 2.7 11,085 3.3 11,652 4.3 12,390 1150 1.7 11,310 2.3 11,882 2.5 11,921 3.1 12,509 4.1 13,273 120 1.6 13,273 2.2 13,893 2.3 13,935 2.9 14,569<	7.2 6,7 6.8 7,6
950 2.0 7,854 2.8 8,332 3.1 8,365 3.8 8,858 5.0 9,503 1000 1.9 8,742 2.7 9,246 2.9 9,280 3.6 9,799 4.7 10,477 1050 1.9 9,503 2.6 10,029 2.8 10,064 3.4 10,605 4.5 11,310 1100 1.8 10,496 2.4 11,047 2.7 11,085 3.3 11,652 4.3 12,390 1150 1.7 11,310 2.3 11,882 2.5 11,921 3.1 12,509 4.1 13,273 1200 1.6 12,370 2.2 12,969 2.4 13,009 3.0 13,623 4.0 14,420 1250 1.6 13,273 2.2 13,893 2.3 13,935 2.9 14,569 3.8 15,394 1300 1.5 14,420 2.1 15,066 2.2 15,109 2.8	6.4 8,3
1000 1.9 8,742 2.7 9,246 2.9 9,280 3.6 9,799 4.7 10,477 1050 1.9 9,503 2.6 10,029 2.8 10,064 3.4 10,605 4.5 11,310 1100 1.8 10,496 2.4 11,047 2.7 11,085 3.3 11,652 4.3 12,390 1150 1.7 11,310 2.3 11,882 2.5 11,921 3.1 12,509 4.1 13,273 1200 1.6 12,370 2.2 12,969 2.4 13,009 3.0 13,623 4.0 14,420 1250 1.6 13,273 2.2 13,893 2.3 13,935 2.9 14,569 3.8 15,394 1300 1.5 14,420 2.1 15,066 2.2 15,109 2.8 15,770 3.7 16,627 1350 1.4 15,394 2.0 16,061 2.2 16,106 2.7 16,787 3.5 17,671 1400 1.4 16,627 1.9 <th>6.0 9,2</th>	6.0 9,2
1050 1.9 9,503 2.6 10,029 2.8 10,064 3.4 10,605 4.5 11,310 1100 1.8 10,496 2.4 11,047 2.7 11,085 3.3 11,652 4.3 12,390 1150 1.7 11,310 2.3 11,882 2.5 11,921 3.1 12,509 4.1 13,273 1200 1.6 12,370 2.2 12,969 2.4 13,009 3.0 13,623 4.0 14,420 1250 1.6 13,273 2.2 13,893 2.3 13,935 2.9 14,569 3.8 15,394 1300 1.5 14,420 2.1 15,066 2.2 15,109 2.8 15,770 3.7 16,627 1350 1.4 15,394 2.0 16,061 2.2 16,106 2.7 16,787 3.5 17,671 1400 1.4 16,627 1.9 17,320 2.1 17,366 2.6 </th <th>5.7 10,0 5.4 11,0</th>	5.7 10,0 5.4 11,0
1100 1.8 10,496 2.4 11,047 2.7 11,085 3.3 11,652 4.3 12,390 1150 1.7 11,310 2.3 11,882 2.5 11,921 3.1 12,509 4.1 13,273 1200 1.6 12,370 2.2 12,969 2.4 13,009 3.0 13,623 4.0 14,420 1250 1.6 13,273 2.2 13,893 2.3 13,935 2.9 14,569 3.8 15,394 1300 1.5 14,420 2.1 15,066 2.2 15,109 2.8 15,770 3.7 16,627 1350 1.4 15,394 2.0 16,061 2.2 16,106 2.7 16,787 3.5 17,671 1400 1.4 16,627 1.9 17,320 2.1 17,366 2.6 18,074 3.4 18,991 1450 1.3 17,671 1.9 18,385 2.0 18,433 2.5 19,162 3.3 20,106 1500 1.3 18,991 1.	5.2 11,8
1200 1.6 12,370 2.2 12,969 2.4 13,009 3.0 13,623 4.0 14,420 1250 1.6 13,273 2.2 13,893 2.3 13,935 2.9 14,569 3.8 15,394 1300 1.5 14,420 2.1 15,066 2.2 15,109 2.8 15,770 3.7 16,627 1350 1.4 15,394 2.0 16,061 2.2 16,106 2.7 16,787 3.5 17,671 1400 1.4 16,627 1.9 17,320 2.1 17,366 2.6 18,074 3.4 18,991 1450 1.3 17,671 1.9 18,385 2.0 18,433 2.5 19,162 3.3 20,106 1500 1.3 18,991 1.8 19,731 1.9 19,781 2.4 20,536 3.2 21,512 1600 1.2 21,512 1.7 22,299 1.8 22,352 2.3 23,154 3.0 24,190 1650 1.2 22,698 1.	4.9 12,9
1250 1.6 13,273 2.2 13,893 2.3 13,935 2.9 14,569 3.8 15,394 1300 1.5 14,420 2.1 15,066 2.2 15,109 2.8 15,770 3.7 16,627 1350 1.4 15,394 2.0 16,061 2.2 16,106 2.7 16,787 3.5 17,671 1400 1.4 16,627 1.9 17,320 2.1 17,366 2.6 18,074 3.4 18,991 1450 1.3 17,671 1.9 18,385 2.0 18,433 2.5 19,162 3.3 20,106 1500 1.3 18,991 1.8 19,731 1.9 19,781 2.4 20,536 3.2 21,512 1600 1.2 21,512 1.7 22,299 1.8 22,352 2.3 23,154 3.0 24,190 1650 1.2 22,698 1.6 23,506 1.8 23,561 2.2 24,384 2.9 25,447 1700 1.1 24,190 1.	4.7 13,8
1300 1.5 14,420 2.1 15,066 2.2 15,109 2.8 15,770 3.7 16,627 1350 1.4 15,394 2.0 16,061 2.2 16,106 2.7 16,787 3.5 17,671 1400 1.4 16,627 1.9 17,320 2.1 17,366 2.6 18,074 3.4 18,991 1450 1.3 17,671 1.9 18,385 2.0 18,433 2.5 19,162 3.3 20,106 1500 1.3 18,991 1.8 19,731 1.9 19,781 2.4 20,536 3.2 21,512 1600 1.2 21,512 1.7 22,299 1.8 22,352 2.3 23,154 3.0 24,190 1650 1.2 22,698 1.6 23,506 1.8 23,561 2.2 24,384 2.9 25,447 1700 1.1 24,190 1.6 25,025 1.7 25,081 2.1 25,930 2.8 27,026 1800 1.1 27,055 1.	4.5 15,0
1350 1.4 15,394 2.0 16,061 2.2 16,106 2.7 16,787 3.5 17,671 1400 1.4 16,627 1.9 17,320 2.1 17,366 2.6 18,074 3.4 18,991 1450 1.3 17,671 1.9 18,385 2.0 18,433 2.5 19,162 3.3 20,106 1500 1.3 18,991 1.8 19,731 1.9 19,781 2.4 20,536 3.2 21,512 1600 1.2 21,512 1.7 22,299 1.8 22,352 2.3 23,154 3.0 24,190 1650 1.2 22,698 1.6 23,506 1.8 23,561 2.2 24,384 2.9 25,447 1700 1.1 24,190 1.6 25,025 1.7 25,081 2.1 25,930 2.8 27,026 1800 1.1 27,055 1.5 27,937 1.6 27,996 2.0 28,893 2.6 30,049 1900 1.0 30,018 1.	4.3 16,0 4.2 17,3
1450 1.3 17,671 1.9 18,385 2.0 18,433 2.5 19,162 3.3 20,106 1500 1.3 18,991 1.8 19,731 1.9 19,781 2.4 20,536 3.2 21,512 1600 1.2 21,512 1.7 22,299 1.8 22,352 2.3 23,154 3.0 24,190 1650 1.2 22,698 1.6 23,506 1.8 23,561 2.2 24,384 2.9 25,447 1700 1.1 24,190 1.6 25,025 1.7 25,081 2.1 25,930 2.8 27,026 1800 1.1 27,055 1.5 27,937 1.6 27,996 2.0 28,893 2.6 30,049 1900 1.0 30,018 1.4 30,946 1.5 31,009 1.9 31,952 2.5 33,168 1950 1.0 31,416 1.4 32,365 1.5 32,429 1.9 33,394 2.4 34,636 2000 1.0 33,168 1.	4.0 18,3
1500 1.3 18,991 1.8 19,731 1.9 19,781 2.4 20,536 3.2 21,512 1600 1.2 21,512 1.7 22,299 1.8 22,352 2.3 23,154 3.0 24,190 1650 1.2 22,698 1.6 23,506 1.8 23,561 2.2 24,384 2.9 25,447 1700 1.1 24,190 1.6 25,025 1.7 25,081 2.1 25,930 2.8 27,026 1800 1.1 27,055 1.5 27,937 1.6 27,996 2.0 28,893 2.6 30,049 1900 1.0 30,018 1.4 30,946 1.5 31,009 1.9 31,952 2.5 33,168 1950 1.0 31,416 1.4 32,365 1.5 32,429 1.9 33,394 2.4 34,636 2000 1.0 33,168 1.3 34,143 1.5 34,209 1.8 35,199 2.4 36,474	3.9 19,7
1600 1.2 21,512 1.7 22,299 1.8 22,352 2.3 23,154 3.0 24,190 1650 1.2 22,698 1.6 23,506 1.8 23,561 2.2 24,384 2.9 25,447 1700 1.1 24,190 1.6 25,025 1.7 25,081 2.1 25,930 2.8 27,026 1800 1.1 27,055 1.5 27,937 1.6 27,996 2.0 28,893 2.6 30,049 1900 1.0 30,018 1.4 30,946 1.5 31,009 1.9 31,952 2.5 33,168 1950 1.0 31,416 1.4 32,365 1.5 32,429 1.9 33,394 2.4 34,636 2000 1.0 33,168 1.3 34,143 1.5 34,209 1.8 35,199 2.4 36,474	3.7 20,8 3.6 22,2
1650 1.2 22,698 1.6 23,506 1.8 23,561 2.2 24,384 2.9 25,447 1700 1.1 24,190 1.6 25,025 1.7 25,081 2.1 25,930 2.8 27,026 1800 1.1 27,055 1.5 27,937 1.6 27,996 2.0 28,893 2.6 30,049 1900 1.0 30,018 1.4 30,946 1.5 31,009 1.9 31,952 2.5 33,168 1950 1.0 31,416 1.4 32,365 1.5 32,429 1.9 33,394 2.4 34,636 2000 1.0 33,168 1.3 34,143 1.5 34,209 1.8 35,199 2.4 36,474	3.4 25,0
1800 1.1 27,055 1.5 27,937 1.6 27,996 2.0 28,893 2.6 30,049 1900 1.0 30,018 1.4 30,946 1.5 31,009 1.9 31,952 2.5 33,168 1950 1.0 31,416 1.4 32,365 1.5 32,429 1.9 33,394 2.4 34,636 2000 1.0 33,168 1.3 34,143 1.5 34,209 1.8 35,199 2.4 36,474	3.3 26,3
1900 1.0 30,018 1.4 30,946 1.5 31,009 1.9 31,952 2.5 33,168 1950 1.0 31,416 1.4 32,365 1.5 32,429 1.9 33,394 2.4 34,636 2000 1.0 33,168 1.3 34,143 1.5 34,209 1.8 35,199 2.4 36,474	3.2 27,9
1950 1.0 31,416 1.4 32,365 1.5 32,429 1.9 33,394 2.4 34,636 2000 1.0 33,168 1.3 34,143 1.5 34,209 1.8 35,199 2.4 36,474	3.0 30,9 2.9 34,1
	2.8 35,6
2100 0.9 36,474 1.3 37,497 1.4 37,565 1.7 38,603 2.3 39,938	2.7 37,4
2200 0.9 39,938 1.2 41,007 1.3 41,079 1.6 42,164 2.2 43,558	2.6 41,0 2.5 44,6
2250 0.9 41,548 1.2 42,638 1.3 42,712 1.6 43,818 2.1 45,239	2.4 46,3
2300 0.8 43,558 1.2 44,675 1.3 44,750 1.6 45,882 2.1 47,336	2.4 48,5
2400 0.8 47,336 1.1 48,500 1.2 48,578 1.5 49,757 2.0 51,271	2.3 52,4
2500 0.8 51,271 1.1 52,482 1.2 52,563 1.4 53,789 1.9 55,363 2550 0.8 53,093 1.1 54,325 1.1 54,408 1.4 55,655 1.9 57,256	2.2 56,6 2.1 58,5
2600 0.7 55,363 1.0 56,621 1.1 56,706 1.4 57,979 1.8 59,612	2.1 60,9
2700 0.7 59,612 1.0 60,917 1.1 61,005 1.3 62,325 1.8 64,018	2.0 65,3
2800 0.7 64,018 1.0 65,370 1.0 65,461 1.3 66,829 1.7 68,581	1.9 69,9
2850 0.7 66,052 0.9 67,426 1.0 67,518 1.3 68,906 1.7 70,686 2900 0.7 68,581 0.9 69,981 1.0 70,075 1.2 71,489 1.6 73,301	1.9 72,1 1.9 74,7
3000 0.6 73,301 0.9 74,748 1.0 74,845 1.2 76,307 1.6 78,179	1.8 79,6
3100 0.6 78,179 0.9 79,673 0.9 79,773 1.2 81,282 1.5 83,213	1.8 84,7
3150 0.6 80,425 0.9 81,940 0.9 82,041 1.1 83,571 1.5 85,530 3200 0.6 83,213 0.8 84,754 0.9 84,857 1.1 86,413 1.5 88,405	1.7 87,0 1.7 89,9
3200 0.6 83,213 0.8 84,754 0.9 84,857 1.1 86,413 1.5 88,405 3300 0.6 88,405 0.8 89,993 0.9 90,099 1.1 91,702 1.4 93,753	1.7 89,9
3400 0.6 93,753 0.8 95,388 0.9 95,498 1.1 97,148 1.4 99,259	
3450 0.6 96,211 0.8 97,868 0.8 97,979 1.0 99,650 1.4 101,788	1.6 100,9
3600 0.5 104,922 0.7 106,651 0.8 106,767 1.0 108,511 1.3 110,741 3800 0.5 116,718 0.7 118,542 0.8 118,664 0.9 120,503 1.3 122,852	1.6 103,4
4000 0.5 129,143 0.7 131,061 0.7 131,190 0.9 133,123 1.2 135,591	

Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: angular movement: -0 %.

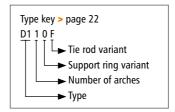
The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN10. In case of deviating flange dimensions, please contact us.

	Installation length ($L_{\scriptscriptstyle E}$) depending on design pressure											
	up to 10		up to 10) bar	up to 10) bar	up to 1	0 bar	up to 10		up to 1	0 bar
	$L_{\rm E}=150$	0 mm	$L_{\rm E}=200$) mm	$L_{\rm E}=250$		$L_E = 300 \text{ mm}$		$L_{\rm E}=350$) mm	$L_{\text{E}} = 400 \text{ mm}$	
						oressures	on request	_				
	Movement	^	Movement	^	Movement	٨	Movement	^	Movement	٨	Movement	
Ø	\sim	A	\searrow	A	\sim	A	\sim	A	\sim	A	\sim	A L/N
	\overline{M}		$\overline{\Box}$		$\overline{\Box}$		\overline{M}	H	\bowtie	\mathbb{H}	\overline{M}	\mathbb{H}
mm	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²
100 125	12.4 10.0	150 209	17.7 14.4	222 293	19.3 15.6	232 305	23.7 19.4	320 405	30.5 25.3	423 519	33.8 28.2	539 647
150	8.3	278	12.0	373	13.1	387	16.3	499	21.5	625	24.1	765
175	7.2	373	10.4	483	11.3	499	14.1	625	18.6	765	20.9	919
200	6.3	445	9.1	564	9.9	581	12.4	716	16.4	866	18.5	1,029
250 300	5.0 4.2	651 908	7.3 6.1	794 1,075	8 6.7	814 1,099	10 8.3	973 1,282	13.3 11.1	1,146 1,479	15 12.6	1,333 1,691
350	3.6	1,213	5.2	1,405	5.7	1,432	7.2	1,640	9.6	1,863	10.8	2,099
400	3.1	1,521	4.6	1,735	5	1,765	6.3	1,995	8.4	2,240	9.5	2,498
450	2.8	1,893	4.1	2,132	4.4	2,165	5.6	2,419	7.5	2,688	8.5	2,971
500	2.5	2,299	3.7	2,561	4	2,597	5	2,875	6.7	3,167	7.6	3,473
550	2.3	2,715	3.3	3,000	3.6	3,039	4.6	3,339	6.1	3,653	6.9	3,982
600 650	2.1 1.9	3,227 3,718	3.1 2.8	3,536 4,049	3.3 3.1	3,578 4,094	4.2 3.9	3,904 4,441	5.6 5.2	4,243 4,803	6.4 5.9	4,596 5,178
700	1.8	4,324	2.6	4,681	2.9	4,729	3.6	5,102	4.8	5,489	5.5	5,890
750	1.7	4,877	2.4	5,255	2.7	5,307	3.4	5,701	4.5	6,110	5.1	6,533
800	1.6	5,581	2.3	5,986	2.5	6,041	3.1	6,461	4.2	6,896	4.8	7,344
850	1.5	6,193	2.2	6,619	2.4	6,677	3	7,118	4	7,574	4.5	8,044
900 950	1.4 1.3	6,984 7,667	2.0 1.9	7,436 8,139	2.2 2.1	7,497 8,203	2.8 2.7	7,964 8,692	3.8 3.6	8,446 9,195	4.3	8,942 9,712
1000	1.3	8,544	1.8	9,043	2.1	9,110	2.7	9,625	3.4	10,153	4 3.8	10,696
1050	1.2	9,297	1.7	9,817	1.9	9,887	2.4	10,423	3.2	10,973	3.7	11,537
1100	1.1	10,279	1.7	10,825	1.8	10,899	2.3	11,461	3.1	12,037	3.5	12,628
1150	1.1	11,085	1.6	11,652	1.7	11,728	2.2	12,311	2.9	12,908	3.3	13,519
1200	1.1	12,135	1.5	12,728	1.7	12,808	2.1	13,417	2.8	14,040	3.2	14,677
1250 1300	1.0 1.0	13,029 14,166	1.5 1.4	13,643 14,806	1.6 1.5	13,726 14,892	2 1.9	14,356 15,548	2.7 2.6	15,001 16,218	3.1 3	15,659 16,902
1350	0.9	15,131	1.4	15,792	1.5	15,881	1.9	16,559	2.5	17,250	2.8	17,955
1400	0.9	16,354	1.3	17,041	1.4	17,134	1.8	17,837	2.4	18,554	2.7	19,285
1450	0.9	17,390	1.3	18,098	1.4	18,194	1.7	18,918	2.3	19,656	2.6	20,409
1500	0.8	18,699	1.2	19,433	1.3	19,532	1.7	20,283	2.3	21,047	2.6	21,825
1600 1650	0.8	21,201 22,379	1.1 1.1	21,983 23,181	1.3 1.2	22,088 23,289	1.6 1.5	22,885 24,108	2.1	23,697 24,941	2.4 2.3	24,522 25,787
1700	0.7	23,861	1.1	24,689	1.2	24,801	1.5	25,645	2	26,504	2.3	27,377
1800	0.7	26,706	1.0	27,582	1.1	27,700	1.4	28,592	1.9	29,498	2.1	30,419
1900	0.7	29,651	1.0	30,573	1.1	30,698	1.3	31,636	1.8	32,589	2	33,556
1950	0.6	31,040	0.9	31,984	1	32,111	1.3	33,071	1.7	34,045	2	35,033
2000 2100	0.6 0.6	32,781 36,069	0.9 0.9	33,751 37,086	1 1	33,882 37,223	1.3 1.2	34,867 38,256	1.7 1.6	35,867 39,303	1.9 1.8	36,881 40,364
2200	0.6	39,514	0.9	40,578	0.9	40,721	1.1	41,801	1.5	42,895	1.7	44,003
2250	0.6	41,115	0.8	42,200	0.9	42,346	1.1	43,447	1.5	44,563	1.7	45,692
2300	0.5	43,116	0.8	44,227	0.9	44,376	1.1	45,503	1.5	46,645	1.7	47,800
2400	0.5	46,875	0.8	48,033	0.8	48,188	1.1	49,363	1.4	50,551	1.6	51,754
2500 2550	0.5 0.5	50,791 52,604	0.7 0.7	51,996 53,831	0.8	52,158 53,995	1	53,379 55,238	1.4 1.3	54,615 56,495	1.5 1.5	55,864 57,766
2600	0.5	54,864	0.7	56,116	0.8	56,284	1	57,553	1.3	58,836	1.5	60,132
2700	0.5	59,094	0.7	60,393	0.7	60,568	0.9	61,883	1.3	63,213	1.4	64,557
2800	0.5	63,481	0.7	64,828	0.7	65,008	0.9	66,371	1.2	67,748	1.4	69,139
2850	0.4	65,506	0.6	66,874	0.7	67,058	0.9	68,442	1.2	69,840	1.3	71,252
2900 3000	0.4 0.4	68,025 72,727	0.6 0.6	69,419 74,168	0.7 0.7	69,606 74,361	0.9 0.8	71,016 75,818	1.2 1.1	72,440 77,289	1.3 1.3	73,878 78,775
3100	0.4	77,585	0.6	79,073	0.7	79,273	0.8	80,777	1.1	82,295	1.3	83,828
3150	0.4	79,823	0.6	81,332	0.6	81,534	0.8	83,060	1.1	84,599	1.2	86,153
3200	0.4	82,601	0.6	84,136	0.6	84,342	0.8	85,893	1.1	87,459	1.2	89,038
3300	0.4	87,773	0.6	89,356	0.6	89,568	0.8	91,166	1	92,779	1.2	94,406
3400 3450	0.4 0.4	93,103 95,553	0.5 0.5	94,733 97,203	0.6 0.6	94,951 97,425	0.7 0.7	96,597 99,091	1	98,256 100,772	1.1	99,930 102,467
3600	0.4	104,234	0.5	105,958	0.6	106,188	0.7	107,928	1 0.9	100,772	1.1 1.1	102,467
3800	0.3	115,993	0.5	117,811	0.5	118,054	0.7	119,888	0.9	121,736	1	123,599
4000	0.3	128,380	0.5	130,292	0.5	130,548	0.6	132,477	0.8	134,419	1	136,376

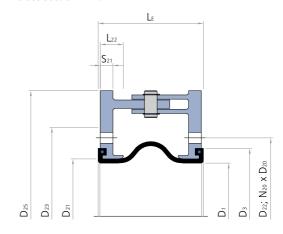
Recommended sizes Further possible sizes Reduction of movement for expansion joints with PTFE lining: angular movement: -0 %.

Angular expansion joints with swivel flange

Single Arch Expansion Joints


D110F Angular expansion joint with one arch

> 288


D110F Ø 20 - 1,200 mm

- > Type D110F without vacuum ring
- > Type D111F with internal vacuum ring
- > Type D112F with embedded vacuum ring

Cross section D110F

Angular expansion joint with one arch

Design: Streamlined, single wide arch rubber bellows with self-sealing rubber

> bulges, designed to compensate angular movement in one plane only, have a cycle life in the tens of millions, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and single-part backing flanges connected over a pair of hinge plates and pins. Optional with vacuum ring. In compliance with PED

2014/68/EU, FSA Technical Handbook and ASTM F1123 - 87.

Ø 20 to 1,200 mm, custom diameters possible

Length: Standard $L_E = 130$ to 350 mm (> page 291–293)

Custom length on request

Pressure: Up to 25 bar depending on diameter and length

Vacuum stability on request, with vacuum ring up to 0.05 bar

absolute

Diameters:

Movement: For angular movements

(> page 291–293)

Application:

Cooling water systems, desalination plants, drinking water supply, plant construction, e.g. in pipelines, on pumps, as dismantling joints, on condensers and vessels

instructions at: www.ditec-adam.de/

Standard rubber bellows

Elastomer	Fabric	Marking	°C	Application
EPDM / EPDM	PEEK		-40 +130	Heating systems, cooling, hot air
IIR / EPDM	Polyamid		-40 +100	Drinking water, seawater, weak acids and alkalis
NBR / CR	Polyamid		-40 +100	Oils, fuels, gases
NBRweiß / CR	Polyamid		-40 +100	Fat containing food, weather resistant
CSM / CSM	Polyamid		-40 +100	Chemicals, aggresive chemical wastewater, weather resistant
NBR / CR	Polyamid		-40 +100	Oils, fuels, gases, LPG, blast furnace gas, lubricants
CR / CR	Polyamid	-	-40 +100	Cold- and hot water, seawater, wastewater with oleaginous corrosion protection
NBR / CR	Stahl		-40 +100	Oils, fuels, gases, fuel ethanol blends
NBR-LT / CR	Polyamid	LT	-40 +100	Oils, fuels, gases, LPG, for tanker and filling stations
HNBR / CR	Stahl		-40 +100	Oils, fuels, gases, LPG, for high Temperature
EPDM / EPDM	Polyamid		-40 +100	Seawater, weak acids and alkalis
IIR / EPDM	Polyamid		-40 +100	Seawater, weak acids and alkalis
BR	Polyamid		-40 +100	Sludge, dust or powder, liquids with solids, emulsions

Non-standard rubber bellows

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single-part, oval backing flanges with support collar, clearance holes, groove to

accommodate the rubber bulges and consisting of a pair of hinge plates connected with pins

(type F)

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective shield (> page 58)

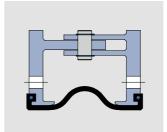
Flow liners: Cylindrical flow liner

Conical flow liner

Telescoping flow liner (> page 57)

Filled arch:

(> page 42)


Hinge

Design: Dimensions according to design

pressure (test pressure)

Materials: Carbon steel, stainless steel

Coating: Galvanised or hot-dip galvanised

Type D110F

Hinge for angular movements on one plane with plates and pins to absorb the reaction forces from pressure and vacuum. Rotation axis in the center of the installation gap

Support rings

TYPE	Support ring	Vacuum ring	Pressure	Movement
D110F		None	Depending on the diameter up to 25 bar, vacuum stability on request	> page 291
D111F		Vacuum spiral up to Ø 250 mm, vacuum ring starting from Ø 300 mm Medium contact, inside the arch	Depending on the diameter up to 25 bar, for vacuum up to 0.05 bar absolute	> page 292
D112F		No medium contact, embedded in the arch starting from ∅ 100 mm	Depending on the diameter up to 16 bar, for vacuum up to 0.05 bar absolute	> page 293

Materials

Stainless steel Carbon steel, embedded

		In	stallation len	nth (I) a	t design pres	SULA		
	1.401.1						1.101	200
	up to 10 bar L _E =	= 130 mm			up to 10 bar L _E	= 1/5 mm	up to 10 bar L _E	= 200 mm
			hi	gher pressu	res on request			
	Movement	А	Movement	A	Movement	А	Movement	Α
Ø	\(\frac{1}{2}\)		\(\frac{1}{2}\)		\rightleftharpoons		\rightleftharpoons	
mm	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²
20 25	30.0 30.0	17 17						
32	30.0	17						
40	35.0	18						
50	30.0	32						
65	30.0	53						
80	30.0	85	30.0	85				
100	20.0	128	20.0	128				
125	20.0	187	20.0	187				
150	20.0	259	20.0	259				
200	12.0	410			12.0	409	16.7	564
250	12.0	596			12.0	599	13.5	799
300	12.0	822			7.8	903	12.0	822
350					6.7	1,134	8.0	907
400					5.9	1,521	8.0	1,018
450					5.2	1,878	7.6	2,116
500					4.7	2,290	8.0	1,692
600					3.9	3,187	8.0	3,078
700					3.4	4,312	4.9	4,669
800					2.9	5,555	4.3	5,958
900					2.6	6,910	3.8	7,359
1000					2.3	8,462	3.4	8,958
1100					2.1	10,171	3.1	10,715
1200					2.0	12,037	2.9	12,628

	Installation length ($L_{\scriptscriptstyle{E}}$) at design pressure												
	up to 10 bar L _E :	= 250 mm	up to 10 bar L _E	= 275mm	up to 10 bar L _E :	= 300 mm	up to 10 bar L	= 350 mm					
			hi	gher pressui	res on request								
	Movement	А	Movement	A	Movement	А	Movement	А					
Ø	\bowtie		\bowtie		\bowtie		\bowtie						
mm	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²					
20													
25													
32													
40													
50													
65 80													
100													
125													
150													
200	17.7	573	17.7	573	22.8	707	29.2	897					
250	14.4	809	14.4	809	18.6	968	24.1	1,188					
300	12.0	1,081	12.0	1,081	15.6	1,263	20.5	1,514					
350	10.4	1,333	10.4	1,333	13.5	1,534	17.7	1,810					
400	9.1	1,750	9.1	1,750	11.9	1,979	15.6	2,290					
450	6.0	1,801	8.1	2,132	10.6	2,384	14.0	2,725					
500	7.3	2,570	7.3	2,570	9.5	2,846	12.6	3,217					
600	6.1	3,515	6.1	3,515	8	3,837	10.6	4,266					
700	8.0	4,019	8.0	4,019	6.8	5,064	9.1	5,555					
800	8.0	5,436	4.6	5,986	6	6,404	8.0	6,955					
900	4.1	7,390	4.1	7,390	5	6,706	7.1	8,462					
1000	3.7	8,992	3.7	8,992	5	8,231	6.4	10,171					
1100	3.3	10,751	3.3	10,751	4.4	11,310	5.8	12,037					
1200	3.1	12,668	3.1	12,668	4	13,273	5.3	14,061					

		In	stallation len	gth (L _E) a	t design pres	sure		
	up to 10 bar L	= 130 mm	up to 10 bar L _E =	= 150 mm	up to 10 bar $L_E = 175 mm$ up to 10 bar $L_E = 200 m$			
			hi	gher pressui	res on request			
	Movement	А	Movement	Α	Movement	А	Movement	Α
Ø	\bowtie		\rightleftharpoons		\Longrightarrow		\Longrightarrow	
mm	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²
20	30.0	17						
25	30.0	17						
32	30.0	17						
40	35.0	18						
50	30.0	32						
65	30.0	53						
80	30.0	85	30.0	85				
100	20.0	128	20.0	128				
125	20.0	187	20.0	187				
150	20.0	259	20.0	259				
200	12.0	410			12.0	409	13.2	564
250	12.0	596			12.0	599	10.6	799
300	12.0	822			6.5	903	12.0	822
350					5.5	1,134	8.0	907
400					4.9	1,521	8.0	1,018
450					4.3	1,878	6.0	2,116
500					3.9	2,290	8.0	1,692
600					3.2	3,187	8.0	3,078
700					2.8	4,312	3.8	4,669
800					2.4	5,555	3.4	5,958
900					2.2	6,910	3.0	7,359
1000					1.9	8,462	2.7	8,958
1100					1.8	10,171	2.4	10,715
1200					1.6	12,037	2.2	12,628

	Installation length ($L_{\scriptscriptstyle E}$) at design pressure												
	up to 10 bar L _E =	= 250 mm	up to 10 bar L _E :	= 275 mm	up to 10 bar L _E	= 300 mm	up to 10 bar L _E	= 350 mm					
			hi	gher pressu	res on request								
	Movement	А	Movement	А	Movement	А	Movement	А					
Ø	\rightleftharpoons		\rightleftharpoons		\bowtie		\bowtie						
mm	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²					
20													
25													
32 40													
50													
65													
80													
100													
125													
150													
200	14.3	573	14.3	573	17.5	707	22.5	897					
250	11.5	809	11.5	809	14.1	968	18.4	1,188					
300	9.6	1,081	9.6	1,081	11.9	1,263	15.5	1,514					
350	8.3	1,333	8.3	1,333	10.2	1,534	13.3	1,810					
400	7.3	1,750	7.3	1,750	9	1,979	11.7	2,290					
450	6.0	1,801	6.5	2,132	8	2,384	10.5	2,725					
500	5.8	2,570	5.8	2,570	7.2	2,846	9.4	3,217					
600	4.9	3,515	4.9	3,515	6	3,837	7.9	4,266					
700	8.0	4,019	8.0	4,019	5.1	5,064	6.8	5,555					
800	8.0	5,436	3.6	5,986	4.5	6,404	5.9	6,955					
900	3.2	7,390	3.2	7,390	5	6,706	5.3	8,462					
1000	2.9	8,992	2.9	8,992	5	8,231	4.7	10,171					
1100	2.7	10,751	2.7	10,751	3.3	11,310	4.3	12,037					
1200	2.4	12,668	2.4	12,668	3	13,273	4.0	14,061					

Standard sizes
Non-standard sizes

		In	stallation len	gth (L _E) a	t design pres	sure			
	up to 10 bar L _E :	= 130 mm	up to 10 bar L _E =	= 150 mm	up to 10 bar L _E :	= 175 mm	up to 10 bar $L_E = 200 \text{ mm}$		
			hi	gher pressu	res on request				
	Movement	А	Movement	А	Movement	А	Movement	A	
Ø	\bowtie		\Longrightarrow		\bowtie		\Longrightarrow		
mm	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²	
20 25 32 40 50 65 80 100 125									
200					6.3	401	9.1	515	
250					5	603	7.3	740	
300					4.2	840	6.1	1,001	
350 400					3.6 3.1	1,064 1,439	5.2 4.6	1,244 1,647	
450					2.8	1,439	4.0	2,019	
500					2.5	2,190	3.7	2,445	
600					2.1	3,068	3.1	3,370	
700					1.8	4,174	2.6	4,525	
800					1.6	5,398	2.3	5,795	
900					1.4	6,735	2	7,178	
1000					1.3	8,268	1.8	8,758	
1100 1200					1.1 1.1	9,958 11,805	1.7 1.5	10,496 12,390	

	Installation length ($L_{\!\scriptscriptstyle E}$) at design pressure												
	up to 10 bar L _E :	= 250 mm	up to 10 bar L _E :	= 275 mm	up to 10 bar L	= 300 mm	up to 10 bar L _E	= 350 mm					
			hi	gher pressu	res on request								
	Movement	А	Movement	А	Movement	А	Movement	A					
Ø	\bowtie		\Longrightarrow		\bowtie		\bowtie						
mm	±°	cm ²	±°	cm ²	±°	cm ²	±°	cm ²					
20													
25													
32													
40													
50													
65 80													
100													
125													
150													
200	9.9	531	9.9	531	12.4	661	16.4	804					
250	8	760	8	760	10	913	13.3	1,081					
300	6.7	1,024	6.7	1,024	8.3	1,201	11.1	1,392					
350	5.7	1,269	5.7	1,269	7.2	1,466	9.6	1,676					
400	5	1,676	5	1,676	6.3	1,901	8.4	2,140					
450	4.4	2,051	4.4	2,051	5.6	2,299	7.5	2,561					
500	4	2,481	4	2,481	5	2,753	6.7	3,039					
600	3.3	3,411	3.3	3,411	4.2	3,728	5.6	4,060					
700	2.9	4,572	2.9	4,572	3.6	4,939	4.8	5,320					
800	2.5	5,849	2.5	5,849	3.1	6,263	4.2	6,691					
900	2.2	7,238	2.2	7,238	2.8	7,698	3.8	8,171					
1000	2	8,825	2	8,825	2.5	9,331	3.4	9,852					
1100 1200	1.8 1.7	10,568 12,469	1.8 1.7	10,568 12,469	2.3 2.1	11,122 13,070	3.1 2.8	11,690 13,685					
1200	1.7	12,409	1.7	12,409	Z. I	13,070	2.8	13,085					

Appendix

Spring Rates and Resistance Coefficient ζ	> 296
Flange Tables	> 298

Spring rates

U110A / D110 non-standard

Axial spring rates (average spring rates from full way and at room temperature in the pipeline*)

Lateral spring rates (average spring rates from full way and at room temperature in the pipeline*)

			Spring	rate for						Spring	rate for		
Ø	0 bar	1 bar	2.5 bar		6 bar	10 bar	Ø	0 bar	1 bar	2.5 bar	4 bar	6 bar	10 bar
mm	N/mm	N/mm	N/mm	4 bar N/mm	N/mm	N/mm	mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm
	22	F0	6.4	442	4.54	225		400	4.47	4.65	405	250	202
100 125	32 35	50 58	64 71	113 121	161 175	235 267	100 125	100 125	147 193	165 216	196 254	250 323	302 381
150	38	65	77	129	189	298	150	150	239	266	312	395	459
175	42	72	84	136	202	329	175	175	284	316	370	468	538
200	45	79	90	144	216	360	200	200	330	366	428	540	616
250	51	88	107	166	246	405	250	220	370	407	475	605	686
300	56	98	118	180	269	454	300	250	425	470	545	695	783
350	73	129	153	239	350	599	350	280	482	529	610	781	882
400	40	70	83	131	190	322	400	180	315	347	400	513	576
450	48	85 99	102	152	235	389	450	190	338	371	420	536	604
500 550	55 62	109	118 127	171 195	265 296	457 501	500 550	200 218	330 359	366 398	428 466	540 588	616 670
600	68	119	136	218	326	544	600	235	388	430	503	635	724
650	69	120	142	223	332	551	650	273	455	502	587	744	846
700	70	121	147	228	338	557	700	310	521	574	670	853	967
750	72	126	151	232	346	583	750	310	527	583	676	862	970
800	73	129	153	239	350	599	800	340	585	643	741	949	1071
850	84	149	178	270	408	685	850	350	613	673	769	982	1108
900	95	169	202	300	466	770	900	360	641	702	796	1015	1145
950	116	207	247	361	561	950	950	370	657	726	876	1049	1181
1000 1050	136 173	245 322	291 377	422 589	656 893	1129 1497	1000 1050	380 388	673 643	749 716	956 929	1083 1075	1216 1217
1100	210	399	462	756	1130	1865	1100	395	612	683	901	1075	1217
1150	225	429	500	816	1204	2001	1150	418	668	733	963	1132	1304
1200	240	458	538	876	1277	2136	1200	440	724	783	1025	1197	1390
1250	242	460	537	883	1287	2151	1250	450	734	807	1052	1231	1424
1300	243	461	535	889	1297	2165	1300	460	744	831	1079	1264	1458
1350	244	462	534	896	1307	2179	1350	470	754	855	1106	1297	1492
1400	245	463	532	902	1316	2193	1400	480	763	878	1133	1330	1526
1450	250	478	560	923	1360	2244	1450	505	824	940	1197	1405	1617
1500 1600	255 310	492 597	587 685	944 1138	1403 1668	2295 2821	1500 1600	530 645	885 1109	1002 1238	1261 1548	1479 1819	1707 2090
1650	350	630	752	1303	1905	3195	1650	678	1207	1308	1636	1969	2223
1700	390	662	818	1468	2142	3569	1700	710	1304	1378	1723	2118	2355
1800	480	926	1051	1819	2616	4416	1800	775	1418	1519	1899	2217	2519
1900	550	1064	1216	2050	3021	5049	1900	813	1506	1618	2008	2332	2652
1950	620	1202	1381	2281	3426	5682	1950	852	1594	1717	2117	2448	2786
2000	690	1339	1546	2512	3830	6314	2000	890	1682	1816	2225	2563	2919
2100	835	1607	1879	2998	4676	7690	2100	886	1692	1852	2304	2596	2835
2200 2250	910 957	1747	2029 2141	3367 3516	4969	8099 8550	2200 2250	1050	2016 2223	2226	2940 3275	3150	3465 3820
2300	1004	1830 1913	2141	3664	5210 5451	9000	2300	1153 1257	2431	2527 2828	3610	3528 3906	4175
2400	1050	1995	2363	3812	5691	9450	2400	1360	2638	3128	3944	4284	4529
2500	1143	2170	2573	4146	6194	10279	2500	1449	2829	3364	4244	4592	4834
2550	1189	2257	2678	4313	6445	10693	2550	1494	2925	3482	4393	4746	4986
2600	1235	2345	2783	4481	6697	11107	2600	1539	3020	3601	4543	4900	5139
2700	1328	2519	2992	4815	7200	11936	2700	1628	3211	3837	4843	5208	5444
2800	1420	2694	3202	5149	7703	12765	2800	1718	3403	4073	5142	5517	5749
2850 2900	1466	2781	3307	5316	7954	13179	2850 2900	1762	3498	4191	5292 5442	5671 5925	5901
3000	1513 1605	2869 3044	3412 3622	5483 5818	8205 8708	13593 14422	3000	1807 1896	3594 3785	4309 4546	5442 5741	5825 6133	6053 6358
3100	1698	3218	3831	6152	9211	15250	3100	1986	3976	4782	6041	6441	6663
3150	1744	3306	3936	6319	9463	15665	3150	2030	4071	4900	6190	6595	6816
3200	1790	3393	4041	6486	9714	16079	3200	2075	4167	5018	6340	6749	6968
3300	1883	3568	4251	6820	10217	16908	3300	2164	4358	5254	6640	7057	7273
3400	1975	3743	4461	7155	10720	17736	3400	2254	4549	5491	6939	7365	7578
3450	2021	3830	4565	7322	10971	18151	3450	2298	4645	5609	7089	7519	7730
3500	2068	3917	4670	7489	11223	18565	3500	2343	4740	5727	7239	7673	7883
3600	2160	4092	4880	7823	11726	19394	3600	2433	4932	5963	7538	7982	8188
4000	2530	4791	5719	9160	13737	22708	4000	2790	5696	6908	8736	9214	9407

^{*}These spring rates should be considered only as approximates which may vary with the elastomers and fabrics used in fabrication and specific construction design. To calculate the approximate spring rate of a multiple arch joint, divide the single arch values by the number of arches.

Spring rates

D110A standard

Axial spring rates (average spring rates from full way and at room temperature in the pipeline*)

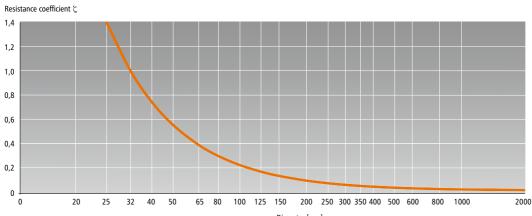
		Spi	ring rate	for		
Ø	0 bar	1 bar	2.5 bar	4 bar	6 bar	10 bar
mm	N/mm	N/mm	N/mm	N/mm	N/mm	N/mm
50	25	42	51	98	134	173
65	24	43	53	100	150	190
80	28	48	58	104	148	185
100	35	59	71	116	206	274
125	36	59	71	137	214	282
150	49	84	102	189	293	390
200	100	153	180	365	568	735
250	105	173	207	388	609	778
300	123	206	248	448	658	883
350	105	153	177	349	567	753
400	154	225	261	516	535	1090
450	167	269	320	581	903	1162
500	196	316	376	686	1060	1364
600	208	264	292	692	1123	1441
700	140	179	198	521	714	954
900	180	240	270	594	975	1258
1000	200	320	380	690	1080	1395
1000	225	355	420	742	1248	1568

Lateral spring rates (average spring rates from full way and at room temperature in the pipeline*)

		Sp	ring rate	for		
Ø mm	0 bar N/mm	1 bar N/mm	2.5 bar N/mm	4 bar N/mm	6 bar N/mm	10 bar N/mm
50	50	60	65	80	105	145
65	40	65	78	115	150	165
80	35	59	74	136	155	173
100	55	74	88	143	168	192
125	100	162	200	261	293	383
150	120	206	260	309	366	466
200	323	555	723	836	949	1219
250	379	624	806	1022	1173	1479
300	392	647	837	1068	1216	1542
350	305	508	610	762	875	1098
400	338	541	642	817	946	1199
450	342	540	639	821	971	1200
500	426	687	818	1048	1204	1495
600	456	708	834	1062	1295	1586
700	516	798	939	1191	1449	1775
800	558	826	960	1055	1557	1758
900	800	1253	1480	1984	2248	2560
1000	960	1536	1824	2361	2736	2976

D210A standard

Axial spring rates (average spring rates from full way and at room temperature in the pipeline*)


		Sp	ring rate	for		
Ø mm	0 bar N/mm	1 bar N/mm	2.5 bar N/mm	3 bar N/mm	6 bar N/mm	10 bar N/mm
32	14	30	56	62	116	180
40	14	30	56	62	116	180
50	12	30	66	76	142	220
65	14	45	87	99	189	286
80	33	75	135	150	258	396
100	28	80	156	176	320	480
125	30	95	186	218	374	580
150	8	68	144	248	320	528
200	42	90	178	204	370	594
250	20	112	224	256	480	768
300	22	108	236	277	520	854
350	28	128	270	310	570	940
400	44	140	296	342	646	1052
500	46	172	354	416	792	1264

Lateral spring rates (average spring rates from full way and at room temperature in the pipeline*)

		Sp	ring rate	for		
Ø mm	0 bar N/mm	1 bar N/mm	2.5 bar N/mm	3 bar N/mm	6 bar N/mm	10 bar N/mm
32	11	17	27	30	45	63
40	11	17	27	30	45	63
50	17	35	47	54	79	107
65	21	37	61	61	96	136
80	32	56	92	94	144	204
100	38	77	112	123	180	243
125	45	88	133	150	225	315
150	48	80	116	123	188	265
200	103	155	221	238	343	473
250	126	208	179	308	442	603
300	167	267	337	400	550	750
350	137	263	385	418	587	833
400	187	293	423	457	633	900
500	203	380	536	573	840	1140

^{*}These spring rates should be considered only as approximates which may vary with the elastomers and fabrics used in fabrication and specific construction design. To calculate the approximate spring rate of a multiple arch joint, divide the single arch values by the number of arches.

Guideline values for pressure drop

			PN 2	2.5			PN	6			PN	10			PN	16	
Ømm	Ø"	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N _{o1}	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁
100	4	210	170	4	18	210	170	4	18	220	180	8	18	220	180	8	18
125	5	240	200	8	18	240	200	8	18	250	210	8	18	250	210	8	18
150	6	265	225	8	18	265	225	8	18	285	240	8	22	285	240	8	22
175	7	295	255	8	18	295	255	8	18	315	270	8	22	315	270	8	22
200	8	320	280	8	18	320	280	8	18	340	295	8	22	340	295	12	22
250	10	375	335	12	18	375	335	12	18	395	350	12	22	405	355	12	26
300	12	440	395	12	22	440	395	12	22	445	400	12	22	460	410	12	26
350	14	490	445	12	22	490	445	12	22	505	460	16	22	520	470	16	26
400	16	540	495	16	22	540	495	16	22	565	515	16	26	580	525	16	30
450 500	18	595	550	16	22 22	595	550	16	22	615	565	20 20	26 26	640	585	20 20	30 33
550	20 22	645	600	20	22	645	600	20	22	670	620	20	20	715	650	20	33
600	24	755	705	20	26	755	705	20	26	780	725	20	30	840	770	20	36
650	26																
700	28	860	810	24	26	860	810	24	26	895	840	24	30	910	840	24	36
750	30				20					4045				4005	050		20
800	32	975	920	24	30	975	920	24	30	1015	950	24	33	1025	950	24	39
850 900	34 36	1075	1020	24	30	1075	1020	24	30	1115	1050	28	33	1125	1050	28	39
950	38	1075	1020	24	30	1075	1020	24	50	1113	1030	20	55	1123	1030	20	33
1000	40	1175	1120	28	30	1175	1120	28	30	1230	1160	28	36	1255	1170	28	42
1050	42																
1100	44					1290	1230	28	33	1345	1270	32	36	1370	1280	28	48
1150	46																
1200	48	1375	1320	32	30	1405	1340	32	33	1455	1380	32	39	1485	1390	32	48
1250	50																
1300	52					1520	1450	32	36	1565	1485	32	42	1585	1490	36	48
1350	54	1575	1520	26	20	1620	1560	26	26	1675	1500	20	42	1605	1590	36	10
1400 1450	56 58	1575	1520	36	30	1630	1560	36	36	1675	1590	36	42	1685	1390	30	48
1500	60					1730	1660	36	36	1795	1705	36	48	1810	1705	36	56
1600	00	1790	1730	40	30	1830	1760	40	36	1915	1820	40	48	1930	1820	40	56
1650	66																
1700						1940	1865	40	39	2015	1920	44	48	2030	1920	44	56
1800	72	1990	1930	44	30	2045	1970	44	39	2115	2020	44	48	2130	2020	44	56
1900						2155	2075	44	42	2220	2125	48	48	2240	2125	44	62
1950	78																
2000		2190	2130	48	30	2265	2180	48	42	2325	2230	48	48	2345	2230	48	62
2100	84	2405	2240		22	2375	2285	48	42	2440	2335	48	56	2555	2440	F2	63
2200 2250	90	2405	2340	52	33	2475	2390	52	42	2550	2440	52	56	2555	2440	52	62
2300	90																
2400	96	2605	2540	56	33	2685	2600	56	42	2760	2650	56	56	2765	2650	56	62
2500						2795	2705	56	48	2860	2750	56	56	2865	2750	60	62
2550	102																
2600		2805	2740	60	33	2905	2810	60	48	2960	2850	60	56	2965	2850	60	62
2700	108																
2800		3030	2960	64	36	3115	3020	64	48	3180	3070	64	56				
2850	114																
2900	422	2222	2460		2.5	2245	2222			2.405	2222						
3000	120	3230	3160	68	36	3315	3220	68	48	3405	3290	68	62				
3100	126																
3150 3200	126	3430	3360	72	36	3525	3430	72	48								
3300	132	J 4 30	3300	12	30	3323	7470	12	40								
3400	132	3630	3560	76	36	3735	3640	76	48								
3450	138																
3600	144	3840	3770	80	36	3970	3860	80	56								
3800		4045	3970	80	39												
4000		4245	4170	84	39												

D₃ Flange external dimension [mm]

D₂ Hole circle [mm] N₀₁ Hole quantity

D₀₁ Hole diameter [mm]

			PN	25		AWWA C207 Class D			ASME B 16.47 Series A 150 lbs				s ASME B 16.47 Series B 150 lbs				
Ømm	Ø"	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N _{o1}	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁
100	4	235	190	8	22	228.6	190.5	8	19.0	,	2	01	01	,	2	01	01
125	5	270	220	8	26	235.0	215.9	8	22.2								
150	6	300	250	8	26	279.4	241.3	8	22.2								
175	7	330	280	12	26												
200	8	360	310	12	26	342.9	298.4	8	22.2								
250	10	425	370	12	30	406.4	361.9	12	25.4								
300	12	485	430	16	30	482.6	431.8	12	25.4	482.6	431.8	12	25.4				
350	14 16	555	490	16	33 36	533.4	476.2 539.7	12 16	28.6	533.4	476.3	12	28.6				
400 450	18	620	550	16	30	596.9 635.0	577.8	16	28.6 31.8	596.9 635.0	539.8 577.9	16 16	28.6 31.8				
500	20	730	660	20	33	698.5	635.0	20	31.8	698.5	635.0	20	31.8				
550	22	,,,,	000	20	33	749.3	692.2	20	34.9	749.3	692.2	20	34.9				
600	24	845	770	20	39	812.8	749.3	20	34.9	812.8	749.3	20	34.9				
650	26					870.0	806.4	24	34.9	870.0	806.4	24	34.9	785.9	744.5	36	22.4
700	28	960	875	24	42	927.1	863.6	28	34.9	927.1	863.6	28	34.9	836.7	795.3	40	22.4
750	30					984.3	914.4	28	34.9	984.3	914.4	28	34.9	887.5	846.1	44	22.4
800	32	1085	990	24	48	1060.5	977.9	28	41.3	1060.5	977.9	28	41.3	941.3	900.2	48	22.4
850	34					1111.3	1028.7	32	41.3	1111.3	1028.7	32	41.3	1004.8	957.3	40	25.4
900	36	1185	1090	28	48	1168.4	1085.8	32	41.3	1168.4	1085.9	32	41.3	1057.1	1009.7	44	25.4
950 1000	38 40	1320	1210	28	56	1238.3 1289.1	1149.4 1200.2	32 36	41.3 41.3	1238.3 1289.1	1149.4 1200.2	32 36	41.3 41.3	1124.0 1174.8	1069.8 1120.6	40 44	28.4 28.4
1050	40	1320	1210	20	30	1346.2	1257.3	36	41.3	1346.2	1257.3	36	41.3	1225.6	1171.4	48	28.4
1100	44					1403.4	1314.5	40	41.3	1403.4	1314.5	40	41.3	1276.4	1222.2	52	28.4
1150	46					1454.2	1365.3	40	41.3	1454.2	1365.3	40	41.3	1341.4	1284.2	40	31.8
1200	48					1511.3	1422.4	44	41.3	1511.3	1422.4	44	41.3	1392.2	1335.0	44	31.8
1250	50					1568.5	1479.6	44	47.6	1568.5	1479.6	44	47.6	1435.4	1385.8	48	31.8
1300	52					1625.6	1536.7	44	47.6	1625.6	1536.7	44	47.6	1493.8	1436.6	52	31.8
1350	54					1682.7	1593.8	44	47.6	1682.7	1593.8	44	47.6	1549.4	1492.3	56	31.8
1400	56					1746.3	1651.0	48	47.6	1746.3	1651.0	48	47.6	1600.2	1543.1	60	31.8
1450	58					1803.4	1708.2	48	47.6	1803.4	1708.2	48	47.6	1674.9	1611.4	48	35.1
1500	60					1854.2	1758.9	52	47.6	1854.2	1759.0	52	47.6	1725.7	1662.2	52	35.1
1600 1650	66					2032.0	1930.4	52	47.6								
1700	00					2032.0	1930.4	32	47.0								
1800	72					2197.1	2095.5	60	47.6								
1900																	
1950	78					2362.2	2260.6	64	54.0								
2000																	
2100	84					2533.7	2425.7	64	54.0								
2200																	
2250	90					2705.1	2590.8	68	61.9								
2300 2400	96					2876.5	2755 0	68	61.9								
2500	30					2070.5	2133.3	00	01.9								
2550	102					3048.0	2908.3	72	68.3								
2600						22,0.0											
2700	108					3219.5	3067.1	72	68.3								
2800																	
2850	114					3390.9	3219.5	76	74.6								
2900																	
3000	120					3562.4	3371.9	76	74.6								
3100	126					3734	2527	90	01								
3150 3200	120					5/34	3537	80	81								
3300	132					3905	3702	80	81								
3400						3303	3.02		5.								
3450	138					4077	3861	84	87								
3600	144					4248	4020	84	87								
3800																	
4000																	

Flange external dimension [mm]

 $\begin{array}{c} \textbf{D}_{3} \\ \textbf{D}_{2} \\ \textbf{N}_{01} \\ \textbf{D}_{01} \end{array}$ Hole circle [mm] Hole quantity Hole diameter [mm]

		ASME B 16.5 - 150 lbs			API St	andard	605 -	150 lbs		MSS S	SP-44			BS Ta	ble E		
Ømm	Ø"	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁
100	4	228.6	190.5	8	19.0		-	01	01	,	-	01	01	215.9	177.8	8	19.0
125	5	235.0	215.9	8	22.2									254.0	209.5	8	19.0
150	6	279.4	241.3	8	22.2									279.4	234.9	8	22.2
175	7	311.2	269.9	8	22.2									304.8	260.3	8	22.2
200	8	342.9	298.4	8	22.2									336.5	292.1	8	22.2
250 300	10 12	406.4 482.6	361.9 431.8	12 12	25.4 25.4									406.4 457.2	355.6 406.4	12 12	22.2 25.4
350	14	533.4	476.2	12	28.6									527.0	469.9	12	25.4
400	16	596.9	539.7	16	28.6									577.8	520.7	12	25.4
450	18	635.0	577.8	16	31.8									641.3	584.2	16	25.4
500	20	698.5	635.0	20	31.8									704.8	641.3	16	25.4
550	22	749.3	692.2	20	34.9												
600	24	812.8	749.3	20	34.9									825.5	755.7	16	25.4
650	26					785.8	744.5	36	22.2	870.0	806.4	24	34.9	870.0	806.4	24	34.9
700	28					836.6	795.3	40	22.2	927.1	863.6	28	34.9	927.1	863.6	28	34.9
750 800	30 32					887.4 941.4	846.1 900.1	44 48	22.2 22.2	984.3 1060.5	914.4 977.9	28 28	34.9 41.3	984.3 1060.5	914.4 977.9	28 28	34.9 41.3
850	34					1004.9	957.3	40	25.4	1111.3	1028.7	32	41.3	1111.3	1028.7	32	41.3
900	36					1057.3	1009.6	44	25.4	1168.4	1085.8	32	41.3		1085.8	32	41.3
950	38									1238.3	1149.4	32	41.3		1149.4	32	41.3
1000	40									1289.1	1200.2	36	41.3	1289.1	1200.2	36	41.3
1050	42					1225.5	1171.6	48	28.6	1346.2	1257.3	36	41.3		1257.3	36	41.3
1100	44									1403.4	1314.5	40	41.3		1314.5	40	41.3
1150	46					4202.2			24.7	1454.2	1365.3	40	41.3	1454.2		40	41.3
1200	48					1392.2	1335.1	44	31.7	1511.3	1422.4 1479.6	44 44	41.3 47.6	1511.3	1422.4	44	41.3
1250 1300	50 52									1568.5 1625.6	1536.7	44	47.6 47.6				
1350	54					1549.4	1492.3	56	31.7	1682.7	1593.8	44	47.6				
1400	56						52.5	50	J	1746.3	1651.0	48	47.6				
1450	58									1803.4	1708.2	48	47.6				
1500	60					1725.6	1662.1	52	34.9	1854.2	1758.9	52	47.6				
1600																	
1650	66																
1700	77																
1800 1900	72																
1950	78																
2000																	
2100	84																
2200																	
2250	90																
2300																	
2400	96																
2500 2550	102																
2600	102																
2700	108																
2800																	
2850	114																
2900																	
3000	120																
3100	42-																
3150	126																
3200 3300	132																
3400	132																
3450	138																
3600	144																
3800																	
4000																	

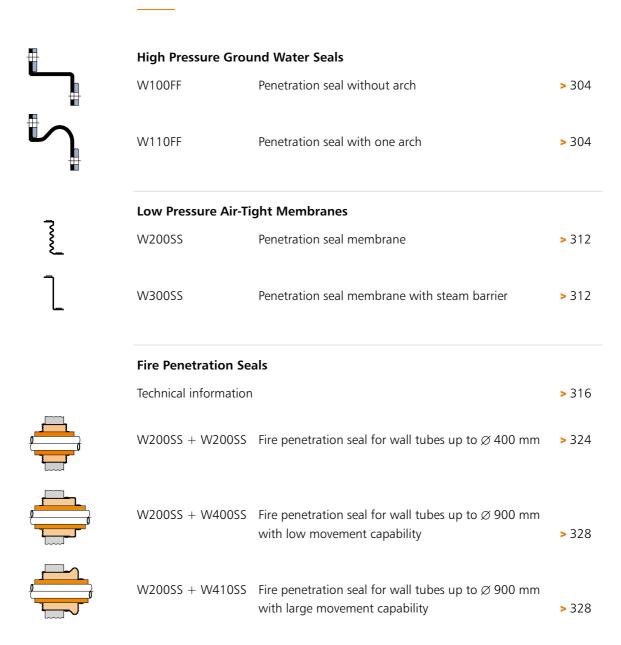
D₃ Flange external dimension [mm]

D₂ Hole circle [mm] N₀₁ Hole quantity

D₀₁ Hole diameter [mm]

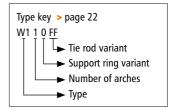
			JIS B22	20 5K			JIS B22	20 10K			JIS B222	20 16K	
Ømm	Ø"	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁	D ₃	D ₂	N ₀₁	D ₀₁
100	4	200.0	165.0	8	19.0	210.0	175.0	8	19.0	225.0	185.0	8	23.0
125	5	235.0	200.0	8	19.0	250.0	210.0	8	23.0	270.0	225.0	8	25.0
150	6	265.0	230.0	8	19.0	280.0	240.0	8	23.0	305.0	260.0	12	25.0
175	7	300.0	260.0	8	23.0	305.0	265.0	12	23.0				
200	8	320.0	280.0	8	23.0	330.0	290.0	12	23.0	350.0	305.0	12	25.0
250	10	385.0	345.0	12	23.0	400.0	355.0	12	25.0	430.0	380.0	12	27.0
300	12	430.0	390.0	12	23.0	445.0	400.0	16	25.0	480.0	430.0	16	27.0
350	14	480.0	435.0	12	25.0	490.0	445.0	16	25.0	540.0	480.0	16 16	33.0
400	16	540.0	495.0	16	25.0	560.0	510.0 565.0	16	27.0 27.0	605.0	540.0 605.0	16	33.0 33.0
450 500	18 20	605.0 655.0	555.0 605.0	16 20	25.0 25.0	620.0 675.0	620.0	20 20	27.0	675.0 730.0	660.0	20 20	33.0
550	22	720.0	665.0	20	27.0	745.0	680.0	20	33.0	795.0	720.0	20	39.0
600	24	770.0	715.0	20	27.0	795.0	730.0	24	33.0	845.0	770.0	24	39.0
650	26	825.0	770.0	24	27.0	845.0	780.0	24	33.0	895.0	820.0	24	39.0
700	28	875.0	820.0	24	27.0	905.0	840.0	24	33.0	960.0	875.0	24	42.0
750	30	945.0	880.0	24	33.0	970.0	900.0	24	33.0	1020.0	935.0	24	42.0
800	32	995.0	930.0	24	33.0	1020.0	950.0	28	33.0	1085.0	990.0	24	48.0
850	34	1045.0	980.0	24	33.0	1070.0	1000.0	28	33.0	1135.0	1040.0	24	48.0
900	36	1095.0	1030.0	24	33.0	1120.0	1050.0	28	33.0	1185.0	1090.0	28	48.0
950	38												
1000	40	1195.0	1130.0	28	33.0	1235.0	1160.0	28	39.0	1320.0	1210.0	28	56.0
1050	42												
1100	44	1305.0	1240.0	28	33.0	1345.0	1270.0	28	39.0	1420.0	1310.0	32	56.0
1150	46												
1200	48	1420.0	1350.0	32	33.0	1465.0	1380.0	32	39.0	1530.0	1420.0	32	56.0
1250	50												
1300	52	4555.0	4505.0		22.0	4520.0		2.5		1645.0	1530.0	32	62.0
1350	54	1575.0	1505.0	32	33.0	1630.0	1540.0	36	45.0	1700.0	1590.0	32	62.0
1400	56									1755.0	1640.0	36	62.0
1450 1500	58 60	1730.0	1660.0	36	33.0	1795.0	1700.0	40	45.0	1865.0	1750.0	36	62.0
1600	00	1730.0	1000.0	30	33.0	1793.0	1700.0	40	43.0	1003.0	1730.0	30	02.0
1650	66												
1700													
1800	72												
1900													
1950	78												
2000													
2100	84												
2200													
2250	90												
2300	96												
2400 2500	90												
2550	102												
2600	102												
2700	108												
2800													
2850	114												
2900													
3000	120												
3100													
3150	126												
3200													
3300	132												
3400													
3450	138												
3600	144												
3800													
4000													

Flange external dimension [mm]


 $\begin{array}{c} \textbf{D}_{3} \\ \textbf{D}_{2} \\ \textbf{N}_{01} \\ \textbf{D}_{01} \end{array}$ Hole circle [mm] Hole quantity

Hole diameter [mm]

Penetration seals



W100FF W110FF Ø 200 - 4,000 mm

✓ up to 4,000 x 4,000 mm✓ up to 6,000 x 3,000 mm

- > Type W100FF without arch, without vacuum ring
- > Type W110FF with arch, without vacuum ring
- > Type W111FF with arch, with vacuum ring

Penetration seal without arch or with one arch

Design: Cylindrical, single or multiple arch penetration seals with excellent

all-directional movement capability, available in flanged or slip-on designs, constructed with a high-grade leak-proof tube, multiple layers of high-strength cord, a seamless cover, and with single- or multi-part backing flanges or fixing clamps. Arch styles optional with vacuum ring. Available customised round or rectangular styles, also offset designs for pipe misalignment and split wrap designs available for field installation around existing penetrating pipe applications.

Dimensions: Ø 200 to 4,000 mm

Length: Standard $L_E = 150$ to 250 mm (> page 308–310)

Custom length on request

Pressure: Up to 2.5 bar depending on diameter and length

Vacuum or external pressure not allowed without vacuum ring

Movement: For axial, lateral and angular movements

Application:
Power plants, plant
construction, armature
shafts, turbine houses
e. g. for building /
ground settlements
for pipe or vessel
penetrations, noise
absorption, vibration,
pipe misalignment,
thermal movements,
seismic displacements or
as ground water seals

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Backing flanges

Design: Single- or multi-part round backing flanges with clearance holes

Optional support collar for high internal pressure

Flange norms: DIN, EN, ANSI, AWWA, BS, JIS, special measurements (> page 298)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Clamps

Design: Depending on pressure and diameter, endless clamp belt or hinge bolt clamps

At higher pressures, 2 parallel clamps per side

Width: Endless clamp belt: 3/4"

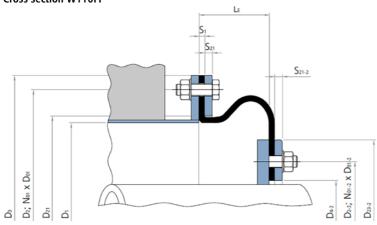
Hinge bolt clamp: depending on Ø: 18 – 30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Support rings

ТҮРЕ	Support rings		Vacuum ring	Pressur	re	Movement
W100FF			None	Depend up to 2 on requ	ling on the diameter .5 bar, vacuum stability iest	> page 308
W110FF			None		ling on the diameter .5 bar, vacuum stability iest	> page 309
W111FF			Inside the arch	2.5 bar,	ling on diameter up to tested for external e up to 2.0 bar	> page 310
Materials						
Stainless steel		Carbon steel, ru	bberised		Carbon steel, embedded	


Accessories

Protective covers: Ground protective shield

Protective shield or cover

Fire protective shield (> page 58)

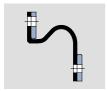
Cross section W110FF

Installation variants

TYPE	Wall pipe fixing	Medium pipe fixing	Pressure	Dimensions
W110SS	Sleeve	Sleeve	Low	Medium pipe up to Ø 1,000 mm
W110FS	Flange	Sleeve	Low	Medium pipe up to Ø 1,000 mm
W110SF	Sleeve	Flange	Low	Wall pipe up to Ø 1,000 mm
W110FF	Flange	Flange	up to 2.5 bar with vacuum ring, tested for external pressure, up to 20 m water column	Wall pipe / duct up to Ø 4,000 mm, Ø 4,000 x 4,000 mm or Ø 6,000 x 3,000 mm
U110A > page 70	Flange	Flange	high pressure	Wall pipe / duct up to Ø 4,000 mm, Ø 4,000 x 4,000 mm or Ø 6,000 x 3,000 mm

Installation example - wall penetration seal type W111FF - wall pipe - ground protective shield - test expansion joint

W100FF


> without arch, without vacuum ring

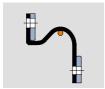
	Installation length $(L_{\!\scriptscriptstyle E})$ at design pressure															
		U	p to 2.5	bar L _E :	= 150 m	m				= 200 m		ι	ıp to 2.5	bar L _E :	= 250 m	ım
								<u> </u>		on reque	st					
Wall	Medium	Lal	Move	ment	\ ~ /	A	Lal	Move	ment	\ - /	A	Lal	Move	ment	\ ~ <i>I</i>	A
pipe ∅	pipe Ø	+()+		E A	()		+{ }		E A	£ 7		- []-		Æ ¥	£7	
mm	mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	80	8	5	9	2.9	314	10	6	12	3.4	314	13	8	14	4.6	314
250	100	8	5	8	2.3	491	10	6	11	2.7	491	13	8	14	3.7	491
300	125 150	8	5 5	8 8	1.9 1.9	716 716	10 10	6 6	11 11	2.3 2.3	716 716	13 13	8 8	13 13	3.1 3.1	716 716
400	175	8	5	8	1.4	1,269	10	6	10	1.7	1,269	13	8	13	2.3	1,269
400	200	8	5	8	1.4	1,269	10	6	10	1.7	1,269	13	8	13	2.3	1,269
500	250 300	8	5 5	7 7	1.1 1.1	1,987 1,987	10 10	6 6	10 10	1.4 1.4	1,987 1,987	13 13	8 8	12 12	1.8 1.8	1,987 1,987
500	350	8	5	7	1.0	2,856	10	6	9	1.1	2,856	13	8	12	1.5	2,856
600	400	8	5	7	1.0	2,856	10	6	9	1.1	2,856	13	8	12	1.5	2,856
700	450	8	5	7 7	0.8	3,893	10	6	9	1.0	3,893	13	8	11	1.3	3,893
	500 550	8	5 5	7	0.8	3,893 5,090	10 10	6 6	9 9	1.0 0.9	3,893 5,090	13 13	8	11 11	1.3 1.1	3,893 5,090
800	600	8	5	7	0.7	5,090	10	6	9	0.9	5,090	13	8	11	1.1	5,090
900	650	8	5	6	0.6	6,433	10	6	9	0.8	6,433	13	8	11	1	6,433
	700 750	8	5 5	6 6	0.6	6,433 7,933	10 10	6 6	9 8	0.8 0.7	6,433 7,933	13 13	8	11 10	1 0.9	6,433 7,933
1000	800	8	5	6	0.6	7,933	10	6	8	0.7	7,933	13	8	10	0.9	7,933
1100	850	8	5	6	0.5	9,590	10	6	8	0.6	9,590	13	8	10	0.8	9,590
1100	900	8	5	6	0.5	9,590	10	6	8	0.6	9,590	13	8	10	0.8	9,590
1200	950 1000	8	5 5	6 6	0.5 0.5	11,404 11,404	10 10	6 6	8 8	0.6 0.6	11,404 11,404	13 13	8 8	10 10	0.8 0.8	11,404 11,404
	1050	8	5	6	0.4	15,504	10	6	8	0.5	15,504	13	8	10	0.7	15,504
1400	1100	8	5	6	0.4	15,504	10	6	8	0.5	15,504	13	8	10	0.7	15,504
1400	1150	8	5	6	0.4	15,504	10	6	8	0.5	15,504	13	8	10	0.7	15,504
	1200 1250	8	5 5	6 6	0.4	15,504 20,232	10 10	6 6	8	0.5 0.4	15,504 20,232	13 13	8	10 10	0.7 0.6	15,504 20,232
1600	1300	8	5	6	0.4	20,232	10	6	8	0.4	20,232	13	8	10	0.6	20,232
1600	1350	8	5	6	0.4	20,232	10	6	8	0.4	20,232	13	8	10	0.6	20,232
	1400 1450	8	5 5	6 6	0.4	20,232	10 10	6 6	8 7	0.4	20,232 25,588	13 13	8	10 9	0.6 0.5	20,232 25,588
1800	1500	8	5	6	0.3	25,588 25,588	10	6	7	0.4	25,588	13	8	9	0.5	25,588
	1600	8	5	6	0.3	25,588	10	6	7	0.4	25,588	13	8	9	0.5	25,588
2000	1650	8	5	5	0.3	31,573	10	6	7	0.3	31,573	13	8	9	0.5	31,573
2000	1700 1800	8	5 5	5 5	0.3 0.3	31,573 31,573	10 10	6 6	7 7	0.3 0.3	31,573 31,573	13 13	8 8	9 9	0.5 0.5	31,573 31,573
	1900	8	5	5	0.3	38,186	10	6	7	0.3	38,186	13	8	9	0.4	38,186
2200	1950	8	5	5	0.3	38,186	10	6	7	0.3	38,186	13	8	9	0.4	38,186
	2000	8	5 5	5	0.3	38,186	10	6	7	0.3	38,186 45,428	13	8	9	0.4	38,186
2400	2100 2200	8	5 5	5 5	0.2 0.2	45,428 45,428	10 10	6 6	7 7	0.3 0.3	45,428	13 13	8 8	9 9	0.4 0.4	45,428 45,428
	2250	8	5	5	0.2	53,297	10	6	7	0.3	53,297	13	8	9	0.4	53,297
2600	2300	8	5	5	0.2	53,297	10	6	7	0.3	53,297	13	8	9	0.4	53,297
	2400 2500	8	5 5	5 5	0.2	53,297 61,795	10 10	6 6	7 7	0.3 0.2	53,297 61,795	13 13	8	9 9	0.4	53,297 61,795
2800	2550	8	5	5	0.2	61,795	10	6	7	0.2	61,795	13	8	9	0.3	61,795
	2600	8	5	5	0.2	61,795	10	6	7	0.2	61,795	13	8	9	0.3	61,795
3000	2700 2800	8	5 5	5 5	0.2	70,922	10 10	6 6	7 7	0.2	70,922	13	8 8	8 8	0.3 0.3	70,922 70,922
	2850	8	5	5	0.2	70,922 80,676	10	6	7	0.2	70,922 80,676	13 13	8	8	0.3	80,676
3200	2900	8	5	5	0.2	80,676	10	6	7	0.2	80,676	13	8	8	0.3	80,676
	3000	8	5	5	0.2	80,676	10	6	7	0.2	80,676	13	8	8	0.3	80,676
3400	3100 3150	8	5 5	5 5	0.2 0.2	91,059 91,059	10 10	6 6	7 7	0.2 0.2	91,059 91,059	13 13	8 8	8 8	0.3 0.3	91,059 91,059
3400	3200	8	5	5	0.2	91,059	10	6	7	0.2	91,059	13	8	8	0.3	91,059
3600	3300	8	5	5	0.2	102,071	10	6	6	0.2	102,071	13	8	8	0.3	102,071
2300	3400	8	5	5	0.2	102,071	10	6	6	0.2	102,071	13	8	8	0.3	102,071
3800	3450 3600	8	5 5	5 5	0.2 0.2	113,710 113,710	10 10	6 6	6 6	0.2 0.2	113,710 113,710	13 13	8 8	8 8	0.2 0.2	113,710 113,710
4000	3800	8	5	5	0.1	125,978	10	6	6	0.2	125,978	13	8	8	0.2	125,978

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Other installation lengths and combinations on request.

For larger movements see type W110FF.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN2,5. In case of deviating flange dimensions, please contact us.

W110FF > with arch, without vacuum ring

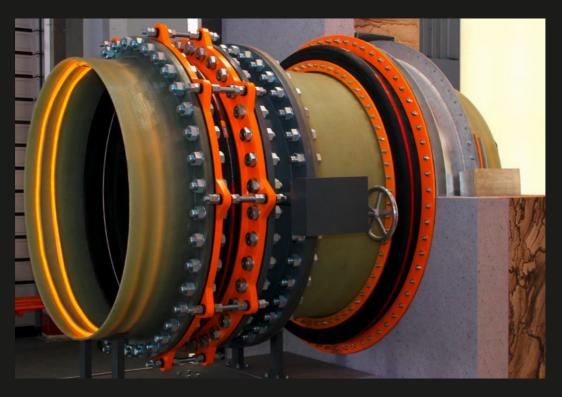


					Ins	stallatio	ion length (L _E) at design pressure									
		l	up to 2.5	bar L _E :	= 150 m	ım		_		= 200 m		l	up to 2.5	bar L _E	= 250 m	ım
										on reque	st					
Wall	Medium	اما	Move	ment	\ - /	A	lal	Move	ment	\ ~ <i>I</i>	A	Lal	Move	ment	\ ~ /	A
pipe ∅	pipe Ø	- [}-		K A	£3		- 【}-		₹ ¥	£3		- []-		K Y	£3	
mm	mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²
200	80	34	17	26	9.6	616	45	26	37	14.6	765	59	37	49	20.3	962
250	100	34	17	26	7.7	855	45	26	36	11.7	1,029	59	37	48	16.5	1,257
300	125 150	34 34	17 17	26 26	6.5 6.5	1,146 1,146	45 45	26 26	36 36	9.8 9.8	1,346 1,346	59 59	37 37	48 48	13.9 13.9	1,605 1,605
	175	34	17	25	4.9	1,825	45	26	35	7.4	2,075	59	37	46	10.5	2,393
400	200	34	17	25	4.9	1,825	45	26	35	7.4	2,075	59	37	46	10.5	2,393
500	250	34	17	24	3.9	2,669	45	26	34	5.9	2,971	59	37	45	8.4	3,349
300	300	34	17	24	3.9	2,669	45	26	34	5.9	2,971	59	37	45	8.4 7	3,349
600	350 400	34 34	17 17	24 24	3.2 3.2	3,664 3,664	45 45	26 26	33 33	5.0 5.0	4,015 4,015	59 59	37 37	45 45	7	4,453 4,453
700	450	34	17	24	2.8	4,827	45	26	33	4.2	5,230	59	37	44	6	5,728
700	500	34	17	24	2.8	4,827	45	26	33	4.2	5,230	59	37	44	6	5,728
800	550 600	34	17	23	2.4	6,151	45	26	33	3.7	6,604	59 59	37 37	43 43	5.3 5.3	7,163
	650	34 34	17 17	23 23	2.4	6,151 7,620	45 45	26 26	33 32	3.7 3.3	6,604 8,123	59	37	43	5.5 4.7	7,163 8,742
900	700	34	17	23	2.2	7,620	45	26	32	3.3	8,123	59	37	43	4.7	8,742
1000	750	34	17	23	1.9	9,246	45	26	32	3.0	9,799	59	37	43	4.2	10,477
1000	800	34	17	23	1.9	9,246	45	26	32	3.0	9,799	59	37	43	4.2	10,477
1100	850 900	34 34	17 17	23 23	1.8 1.8	11,029 11,029	45 45	26 26	32 32	2.7 2.7	11,632 11,632	59 59	37 37	42 42	3.8 3.8	12,370 12,370
4200	950	34	17	22	1.6	12,969	45	26	31	2.5	13,623	59	37	42	3.5	14,420
1200	1000	34	17	22	1.6	12,969	45	26	31	2.5	13,623	59	37	42	3.5	14,420
	1050	34	17	22	1.4	17,320	45	26	31	2.1	18,074	59	37	41	3	18,991
1400	1100 1150	34 34	17 17	22 22	1.4 1.4	17,320 17,320	45 45	26 26	31 31	2.1 2.1	18,074 18,074	59 59	37 37	41 41	3 3	18,991 18,991
	1200	34	17	22	1.4	17,320	45	26	31	2.1	18,074	59	37	41	3	18,991
	1250	34	17	22	1.2	22,299	45	26	31	1.9	23,154	59	37	41	2.6	24,190
1600	1300	34	17	22	1.2	22,299	45	26	31	1.9	23,154	59	37	41	2.6	24,190
	1350 1400	34 34	17 17	22 22	1.2 1.2	22,299 22,299	45 45	26 26	31 31	1.9 1.9	23,154 23,154	59 59	37 37	41 41	2.6 2.6	24,190 24,190
	1450	34	17	22	1.1	27,907	45	26	30	1.7	28,863	59	37	40	2.4	30,018
1800	1500	34	17	22	1.1	27,907	45	26	30	1.7	28,863	59	37	40	2.4	30,018
	1600	34	17	22	1.1	27,907	45	26	30	1.7	28,863	59	37	40	2.4	30,018
2000	1650 1700	34 34	17 17	21 21	1.0 1.0	34,143 34,143	45 45	26 26	30 30	1.5 1.5	35,199 35,199	59 59	37 37	40 40	2.1 2.1	36,474 36,474
2000	1800	34	17	21	1.0	34,143	45	26	30	1.5	35,199	59	37	40	2.1	36,474
	1900	34	17	21	0.9	41,007	45	26	30	1.4	42,164	59	37	40	1.9	43,558
2200	1950	34	17	21	0.9	41,007	45	26	30	1.4	42,164	59	37	40	1.9	43,558
	2000 2100	34 34	17 17	21 21	0.9 0.8	41,007 48,500	45 45	26 26	30 29	1.4 1.2	42,164 49,757	59 59	37 37	40 39	1.9 1.8	43,558 51,271
2400	2200	34	17	21	0.8	48,500	45	26	29	1.2	49,757	59	37	39	1.8	51,271
	2250	34	17	21	0.7	56,621	45	26	29	1.1	57,979	59	37	39	1.6	59,612
2600	2300	34	17	21	0.7	56,621	45	26	29	1.1	57,979	59	37	39	1.6	59,612
	2400 2500	34 34	17 17	21 21	0.7 0.7	56,621 65,370	45 45	26 26	29 29	1.1	57,979 66,829	59 59	37 37	39 39	1.6 1.5	59,612 68,581
2800	2550	34	17	21	0.7	65,370	45	26	29	1.1	66,829	59	37	39	1.5	68,581
	2600	34	17	21	0.7	65,370	45	26	29	1.1	66,829	59	37	39	1.5	68,581
3000	2700	34	17	21	0.6	74,748	45	26	29	1.0	76,307	59	37	39	1.4	78,179
	2800 2850	34 34	17 17	21 21	0.6 0.6	74,748 84,754	45 45	26 26	29 29	1.0 0.9	76,307 86,413	59 59	37 37	39 38	1.4 1.3	78,179 88,405
3200	2900	34	17	21	0.6	84,754	45	26	29	0.9	86,413	59	37	38	1.3	88,405
	3000	34	17	21	0.6	84,754	45	26	29	0.9	86,413	59	37	38	1.3	88,405
2422	3100	34	17	20	0.6	95,388	45	26	29	0.9	97,148	59	37	38	1.2	99,259
3400	3150 3200	34 34	17 17	20 20	0.6 0.6	95,388 95,388	45 45	26 26	29 29	0.9 0.9	97,148 97,148	59 59	37 37	38 38	1.2 1.2	99,259 99,259
2000	3300	34	17	20	0.5	106,651	45	26	28	0.8	108,511	59	37	38	1.2	110,741
3600	3400	34	17	20	0.5	106,651	45	26	28	0.8	108,511	59	37	38	1.2	110,741
3800	3450	34	17	20	0.5	118,542	45	26	28	0.8	120,503	59	37	38	1.1	122,852
4000	3600 3800	34 34	17	20	0.5	118,542	45	26	28	0.8	120,503	59 50	37 37	38 38	1.1	122,852 135,591
4000	3000	54	17	20	0.5	131,061	45	26	28	0.7	133,123	59	3/	38	1.1	155,591

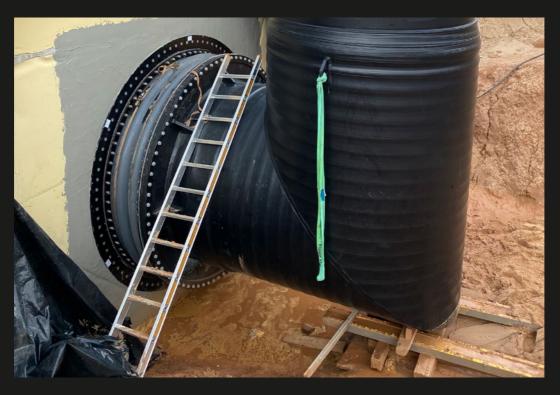
In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Other installation lengths and combinations on request.

Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN2,5. In case of deviating flange dimensions, please contact us.



W111FF > with arch, with vacuum ring

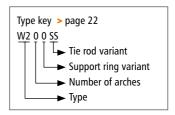

		Installation length ($L_{\scriptscriptstyle E}$) at design pressure															
		up to 2.5 bar $L_E = 150 \text{ mm}$ up to 2.5 bar $L_E = 200 \text{ mm}$										up to 2.5 bar $L_E = 250 \text{ mm}$					
								<u> </u>		on reque	st						
Wall	Medium	1 - 1	Move	ment	.	Α.	1 - 1	Move	ment		Α .	1	Move	ment		A	
pipe Ø	pipe ∅	-[^]-		ΚÀ	₹		- [^]-		ΕΉ	₹¥		- [^]-		ξÀ	₹		
mm	mm	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	mm	mm	±mm	±°	cm ²	
200	80	34	6	26	3.4	616	45	9	37	5.1	765	59	12	49	6.8	962	
250	100	34	6	26	2.7	855	45	9	36	4.1	1,029	59	12	48	5.5	1,257	
300	125	34	6	26	2.3	1,146	45	9	36	3.4	1,346	59	12	48	4.6	1,605	
	150 175	34 34	6 6	26 25	2.3 1.7	1,146 1,825	45 45	9 9	36 35	3.4 2.6	1,346 2,075	59 59	12 12	48 46	4.6 3.4	1,605 2,393	
400	200	34	6	25	1.7	1,825	45	9	35	2.6	2,075	59	12	46	3.4	2,393	
500	250	34	6	24	1.4	2,669	45	9	34	2.1	2,971	59	12	45	2.7	3,349	
300	300	34	6	24	1.4	2,669	45	9	34	2.1	2,971	59	12	45	2.7	3,349	
600	350 400	34 34	6 6	24 24	1.1 1.1	3,664 3,664	45 45	9 9	33 33	1.7 1.7	4,015 4,015	59 59	12 12	45 45	2.3 2.3	4,453 4,453	
700	450	34	6	24	1.0	4,827	45	9	33	1.5	5,230	59	12	44	2	5,728	
700	500	34	6	24	1.0	4,827	45	9	33	1.5	5,230	59	12	44	2	5,728	
800	550	34	6	23	0.9	6,151	45	9	33	1.3	6,604	59	12	43	1.7	7,163	
	600 650	34 34	6 6	23 23	0.9	6,151 7,620	45 45	9	33 32	1.3 1.1	6,604 8,123	59 59	12 12	43 43	1.7 1.5	7,163 8,742	
900	700	34	6	23	0.8	7,620	45	9	32	1.1	8,123	59	12	43	1.5	8,742	
1000	750	34	6	23	0.7	9,246	45	9	32	1.0	9,799	59	12	43	1.4	10,477	
1000	800	34	6	23	0.7	9,246	45	9	32	1.0	9,799	59	12	43	1.4	10,477	
1100	850 900	34 34	6 6	23 23	0.6 0.6	11,029 11,029	45 45	9 9	32 32	0.9 0.9	11,632 11,632	59 59	12 12	42 42	1.2 1.2	12,370 12,370	
4200	950	34	6	22	0.6	12,969	45	9	31	0.9	13,623	59	12	42	1.1	14,420	
1200	1000	34	6	22	0.6	12,969	45	9	31	0.9	13,623	59	12	42	1.1	14,420	
	1050	34	6	22	0.5	17,320	45	9	31	0.7	18,074	59	12	41	1	18,991	
1400	1100 1150	34 34	6 6	22 22	0.5 0.5	17,320 17,320	45 45	9 9	31 31	0.7 0.7	18,074 18,074	59 59	12 12	41 41	1 1	18,991 18,991	
	1200	34	6	22	0.5	17,320	45	9	31	0.7	18,074	59	12	41	1	18,991	
	1250	34	6	22	0.4	22,299	45	9	31	0.6	23,154	59	12	41	0.9	24,190	
1600	1300	34	6	22	0.4	22,299	45	9	31	0.6	23,154	59	12	41	0.9	24,190	
	1350 1400	34 34	6 6	22 22	0.4 0.4	22,299 22,299	45 45	9 9	31 31	0.6 0.6	23,154 23,154	59 59	12 12	41 41	0.9 0.9	24,190 24,190	
	1450	34	6	22	0.4	27,907	45	9	30	0.6	28,863	59	12	40	0.8	30,018	
1800	1500	34	6	22	0.4	27,907	45	9	30	0.6	28,863	59	12	40	0.8	30,018	
	1600	34	6	22	0.4	27,907	45	9	30	0.6	28,863	59	12	40	0.8	30,018	
2000	1650 1700	34 34	6 6	21 21	0.3 0.3	34,143 34,143	45 45	9 9	30 30	0.5 0.5	35,199 35,199	59 59	12 12	40 40	0.7 0.7	36,474 36,474	
	1800	34	6	21	0.3	34,143	45	9	30	0.5	35,199	59	12	40	0.7	36,474	
	1900	34	6	21	0.3	41,007	45	9	30	0.5	42,164	59	12	40	0.6	43,558	
2200	1950	34	6	21	0.3	41,007	45	9	30	0.5	42,164	59	12	40	0.6	43,558	
	2000 2100	34 34	6 6	21 21	0.3	41,007 48,500	45 45	9 9	30 29	0.5 0.4	42,164 49,757	59 59	12 12	40 39	0.6 0.6	43,558 51,271	
2400	2200	34	6	21	0.3	48,500	45	9	29	0.4	49,757	59	12	39	0.6	51,271	
	2250	34	6	21	0.3	56,621	45	9	29	0.4	57,979	59	12	39	0.5	59,612	
2600	2300 2400	34 34	6 6	21 21	0.3	56,621 56,621	45 4E	9 9	29	0.4	57,979 57,979	59 59	12 12	39	0.5	59,612 59,612	
	2500	34	6	21	0.3 0.2	65,370	45 45	9	29 29	0.4 0.4	66,829	59	12	39 39	0.5 0.5	68,581	
2800	2550	34	6	21	0.2	65,370	45	9	29	0.4	66,829	59	12	39	0.5	68,581	
	2600	34	6	21	0.2	65,370	45	9	29	0.4	66,829	59	12	39	0.5	68,581	
3000	2700 2800	34 34	6 6	21 21	0.2 0.2	74,748 74,748	45 45	9 9	29 29	0.3 0.3	76,307 76,307	59 59	12 12	39 39	0.5 0.5	78,179 78,179	
	2850	34	6	21	0.2	84,754	45	9	29	0.3	86,413	59	12	38	0.3	88,405	
3200	2900	34	6	21	0.2	84,754	45	9	29	0.3	86,413	59	12	38	0.4	88,405	
	3000	34	6	21	0.2	84,754	45	9	29	0.3	86,413	59	12	38	0.4	88,405	
3400	3100 3150	34 34	6 6	20 20	0.2 0.2	95,388 95,388	45 45	9 9	29 29	0.3 0.3	97,148 97,148	59 59	12 12	38 38	0.4 0.4	99,259 99,259	
3400	3200	34	6	20	0.2	95,388	45 45	9	29 29	0.3	97,148	59 59	12	38	0.4	99,259	
3600	3300	34	6	20	0.2	106,651	45	9	28	0.3	108,511	59	12	38	0.4	110,741	
3000	3400	34	6	20	0.2	106,651	45	9	28	0.3	108,511	59	12	38	0.4	110,741	
3800	3450 3600	34 34	6 6	20 20	0.2 0.2	118,542 118,542	45 45	9 9	28 28	0.3 0.3	120,503 120,503	59 59	12 12	38 38	0.4 0.4	122,852 122,852	
4000	3800	34	6	20	0.2	131,061	45	9	28	0.3	133,123	59	12	38	0.4	135,591	
1000	5000	J T		20	V.2	131,001	13	,	20	0.5	155,125	23	12	33	0.5	133,331	

In the event of axial extension and simultaneous lateral displacement the above movements are reduced (> page 29). Other installation lengths and combinations on request. Larger movements on request.

The movement capability of the expansion joints given in the tables is determined for flange dimensions according to DIN PN2,5. In case of deviating flange dimensions, please contact us.

Exhibition model of size \varnothing 1,600 mm tied dismantling expansion joint in front of a butterfly valve wall penetration seal for underground pipe

 \varnothing 2,600 mm double arch ground water penetration seal made from radiation resistant silicone rubber installed outside of a building design pressure 20 m WC, lateral displacement 60 mm from building settlement


W200SS W300SS Ø 25 - 6,000 mm

Ø up to 4,000 x 4,000 mm Ø up to 6,000 x 3,000 mm

- > Type W200SS without steam barrier
- > Type W300SS with steam barrier

Penetration seal membrane

Design: Straight or folded penetration seal membranes with excellent all-

directional movement capability, available in slip-on or flanged designs, standard made from extremely flexible thin silicone materials, and with multi-part backing flanges or fixing clamps. Type W300SS/FS for cold water lines optional with steam diffusion barrier. Available customised round or rectangular styles, also offset designs for pipe misalignment and split wrap designs available for field installation around existing

penetrating pipe applications.

Dimensions: Ø 25 to 6,000 mm

> ☑ up to 4,000 x 4,000 mm or 6,000 x 3,000 mm Custom diameters/rectangular cross-sections possible

Standard $L_F = 60 \text{ mm}$ (> page 314–315) Length:

Custom length on request

Pressure: Up to ± 20 mbar

For axial, lateral and angular movements Movement:

Application:

Power plants, plant construction, turbine houses, e.g. for building / ground settlements for pipe or vessel penetrations, noise absorption, vibration, pipe misalignment, thermal movements, seismic displacements or as airtight seal or splash protection of pipe penetrations, seals for district heating pipelines

Bellows elastomers

Elastomers			Carrier
up to 200 °C:	Silicon (Q)	Air, water, saltwater atmosphere	without
	Silicon special compound	Nuclear applications	
	FPM	Tank pit seals	Aramid
Other elastomers o	n request		

Clamps

Design: Screw thread belt or small clamps

Width: Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm

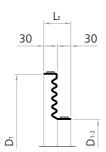
Materials: Screw thread belt with threaded screw lug: 1.4310

Small clamp, belt and housing: 1.4016 (Screw steel galvanised)

Backing flanges

Design: Multi-part clamping flange with clearance holes

Flange norms: According to specification


Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Installation variants

TYPE			Wall pipe fixing	Medium pipe fixing	Pressure	Dimensions
W200SS W300SS	hund	l	Sleeve	Sleeve	Low	Wall pipe / duct up to Ø 6,000 mm, ☑ 4,000 x 4,000 mm or ☑ 6,000 x 3,000 mm
W200FS W300FS			Flange	Sleeve	Low	Medium pipe / duct up to Ø 6,000 mm, ☑ 4,000 x 4,000 mm or ☑ 6,000 x 3,000 mm

Cross section W200SS

W200SS

> without steam barrier

Potential co	mbinations	Movement						
Wall pipe	Medium pipe	- ^-	 	₩				
Ø	Ø	M	\sim	174				
mm	mm	mm	mm	±mm				
	10 15	15 14	15 14	13 12				
50	20	12	12	10				
30	25	9	9	8				
	32	6	6	5				
	15	19	19	16				
	20	17	17	15				
65	25	15	15	13				
	32	12	12	10				
	40 20	10 22	10 22	8 19				
	25	19	19	17				
80	32	16	16	14				
	40	14	14	12				
	50	10	10	9				
	25	28	28	24				
	32	25	25	22				
100	40	23	23	20				
	50	19	19	16				
	65 32	13 34	13 34	11 29				
	40	32	32	29 27				
125	50	28	28	24				
123	65	22	22	19				
	80	18	18	15				
	40	42	42	36				
	50	38	38	32				
150	65	32	32	28				
	80	28	28	24				
	100 65	19 50	19 50	16 43				
	80	46	46	39				
200	100	37	37	31				
	125	28	28	24				
	150	18	18	15				
	80	64	64	55				
	100	56	56	48				
250	125 150	47	47	40				
	200	37 19	37 19	31 16				
	100	73	73	63				
	125	64	64	55				
300	150	54	54	47				
	200	37	37	31				
	250	18	18	15				
	125	76	76	65				
350	150	66	66	56				
350	200 250	48 29	48 29	41 25				
	300	11	11	10				
	150	83	83	71				
	200	66	66	56				
400	250	47	47	40				
	300	29	29	25				
	350	18	18	15				

Dotontial co	mbinations		Movement						
		- IV	lovellie	n					
Wall pipe	Medium pipe	М	\sim	M					
Ø	Ø	****		*					
mm	mm	mm	mm	±mm					
	200	83	83	71					
	250	64	64	55					
450	300	47	47	40					
	350	36	36	30					
	400	18	18	15					
	250	82	82	71					
	300	64	64	55					
500	350	53	53	46					
	400	36	36	30					
	450	18	18	15					
	300	82	82	70					
FFO	350	71	71	61					
550	400 450	53 36	53 36	46 30					
	500	18	18	15					
	350	89	89	76					
	400	71	71	61					
600	450	53	53	46					
	500	36	36	30					
	550	18	18	15					
	400	89	89	76					
	450	71	71	61					
650	500	53	53	46					
	550	36	36	30					
	600	18	18	15					
	450	89	89	76					
700	500 550	71 53	71 53	61 46					
700	600	36	36	30					
	650	18	18	15					
	500	89	89	76					
	550	71	71	61					
750	600	53	53	46					
	650	36	36	30					
	700	18	18	15					
	400	142	142	122					
	450	124	124	107					
800	500	107	107	91					
	600 700	71	71 26	61					
	450	36 160	36 160	30 137					
	500	142	142	122					
900	600	107	107	91					
	700	71	71	61					
	800	36	36	30					
	500	178	178	152					
	600	142	142	122					
1000	700	107	107	91					
	800	71	71	61					
	900	36	36	30					

For wall pipes use nominal diameters if possible. For medium pipes, all diameters can be delivered. Other combinations possible.

Customised products available

Potential co	mbinations	N	loveme	nt
Wall	Medium	Lal		ا را
pipe ∅	pipe ∅	- []-		R X
mm	mm	mm	mm	±mm
	10	5	5	3
	15	5	5	3
50	20	4	4	3
	25 32	3	3 2	2 1
	15	7	7	4
	20	6	6	4
65	25	5	5	3
	32	4	4	3
	40 20	3	3 8	2 5
	25	7	7	4
80	32	6	6	3
	40	5	5	3
	50	4	4	2
	25	10	10	6
100	32 40	9	9 8	5 5
100	50	7	7	4
	65	5	5	3
	32	12	12	7
	40	11	11	7
125	50	10	10	6
	65 80	8	8 6	5 4
	40	15	15	9
	50	14	14	8
150	65	12	12	7
	80	10	10	6
	100 65	7 18	7 18	4 11
	80	16	16	10
200	100	13	13	8
	125	10	10	6
	150	6	6	4
	80 100	23 20	23 20	14 12
250	125	17	17	10
	150	13	13	8
	200	7	7	4
	100	26	26	16
300	125 150	23 19	23 19	14 12
300	200	13	13	8
	250	6	6	4
	125	27	27	16
252	150	23	23	14
350	200 250	17 10	17 10	10 6
	300	4	4	2
	150	30	30	18
	200	23	23	14
400	250	17	17	10
	300	10	10	6
	350	6	6	4

Potential co	mbinations	IV	loveme	nt
Wall	Medium	Lat		١٥.
pipe ∅	pipe ∅	-\		ξ¥
mm	mm	mm	mm	±mm
•••••	200	30	30	18
	250	23	23	14
450	300	17	17	10
	350	13	13	8
	400	6	6	4
	250	29	29	18
500	300 350	23 19	23 19	14 11
500	400	13	13	8
	450	6	6	4
	300	29	29	18
	350	25	25	15
550	400	19	19	11
	450	13	13	8
	500	6	6	4
	350	32	32	19
600	400 450	25 19	25 19	15 11
600	500	13	13	8
	550	6	6	4
	400	32	32	19
	450	25	25	15
650	500	19	19	11
	550	13	13	8
	600	6	6	4
	450 500	32 25	32 25	19
700	550	19	19	15 11
700	600	13	13	8
	650	6	6	4
	500	32	32	19
	550	25	25	15
750	600	19	19	11
	650	13	13	8 4
	700 400	6 51	6 51	30
	450	44	44	27
800	500	38	38	23
	600	25	25	15
	700	13	13	8
	450	57	57	34
000	500	51	51	30
900	600 700	38 25	38 25	23 15
	800	13	13	8
	500	64	64	38
	600	51	51	30
1000	700	38	38	23
	800	25	25	15
	900	13	13	8

For wall pipes use nominal diameters if possible. For medium pipes, all diameters can be delivered. Other combinations possible.

Fire penetration seals > Basics

Protection objectives

The German constitution describes fire protection as follows: "Buildings and structures ... must be placed, erected, modified and maintained such that order and public safety are not jeopardised, especially not the lives and health of the public. Buildings and structures must

be built such that the occurrence and spread of fire and smoke is prevented, and must allow for effective extinguishing and the rescue of people and animals in the event of a fire."

Fire progression

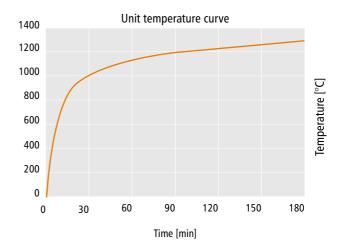
A fire can only occur when there is enough oxygen and combustible material, and an ignition source. During the smouldering phase, the energy released by a fire heats all surrounding material. If this material is combustible, it will ignite upon reaching the limit temperature. The fire behaviour of the construction materials is of significance until the ignition point is reached. Afterwards, during

what is called the blazing fire phase, the fire resistance and the fire behaviour of the component design will determine the duration of a fire in a given space. The spread of the fire depends on the design of the construction components surrounding the fire area, such as walls and ceilings, as well as the pipe bulkheads in the fire walls or ceilings.

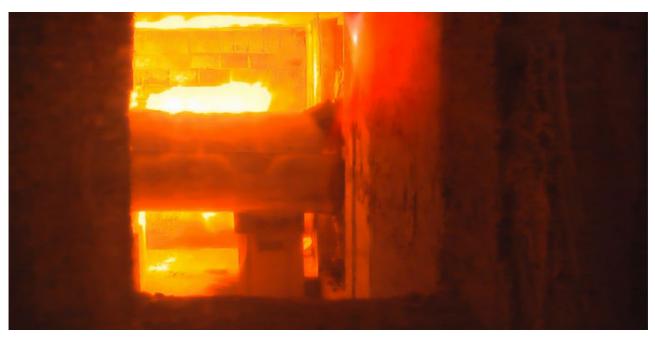
Structural fire protection

Structural fire protection cannot prevent the occurrence of fires, but ensures that a fire remains limited to the smallest possible area through the building's design and fire protection measures. For this reason, stringent requirements are imposed, particularly on structural components that run through the entire structure (beyond the limits of the individual fire compartments), such as ventilation ducts, pipelines and electric cabling. In principle, no openings may be made in fire walls. However, if these are structurally unavoidable, the structural regulations of the German states stipulate that fire and smoke must not be able to spread to other floors or fire compartments in the event of fire.

A simple system for preventing fire and smoke spreading through pipe penetrations through walls and ceilings is through the use of "fire protection bulkheads". We have a system certified by the Building Inspectorate that can be used to create bulkheads using non-flammable pipes in fire walls or fire ceilings. These elastic seals accommodate axial and lateral pipeline movements against the wall or ceiling and ensure reliable bulkheading in the event of fire. Movements occur as a result of thermal pipeline expansions during plant operation or, in the event of a fire, because of additional expansions due to pipeline heating and the relative movement of the building with regard to the lines as a result of wind loads, building displacement or earthquakes.


Pipe bulkheads in accordance with DIN 4102, Section 11

DIN 4102, Section 11 states the following: Pipe penetration bulkheads must be designed such that fire and smoke are not spread through walls and ceilings during the period of fire resistance. The fire resistance period is the minimum duration, in minutes, for the prevention of fire spreading. Various fire resistance classes are differentiated according to the fire resistance period:


Fire resistance classes	Duration of fire resistance [min]
R 30	≥ 30
R 60	≥ 60
R 90	≥ 90
R 120	≥ 120

The installation of fire protection bulkheads helps to prevent a fire spreading via pipe penetrations. The fire resistance class of fire protection bulkheads must be certified by the test result of an officially recognised testing centre. The test is performed in keeping with DIN 4102, Section 11. During a fire test, DIN 4102, Section 11 specifies that the spreading of fire and smoke from the incendiary space, or from pipe claddings or the pipelines themselves located outside of the incendiary space, must be prevented during the fire resistance period. In addition, in no place outside of the incendiary space may the exposed exteriors of the fire protection bulkheads or pipelines be heated by more than 180 K.

The fire test is usually conducted in keeping with DIN 4102, Section 2. The required incendiary space temperatures are shown in the following diagram; these temperatures correspond to the unit temperature curve. This allows the fire resistance period of the construction component to be determined in minutes.

In principle, an installation construction component is only recognised by the certifying body if a "General Building Supervision Certificate" is present. This certificate is issued by the Materials Testing Institute based on the design used in the fire test and described in the test certificate. For special solutions, the official testing institute may be able to provide certification on an individual basis.

Fire penetration seals > Planning

The wall/ceiling sealing membranes and wall/ceiling sealing expansion joints are classified under building materials class B2 ("normal flammability") pursuant to

DIN 4102, Section 1. Their fire behaviour is documented in the "General Building Supervision Certificates" issues by the Materials Testing Institute in Braunschweig.

Materials

Elastic wall and ceiling seals are made using silicone rubber and are reinforced with non-flammable fabrics, depending on the design. In the event of a pressure differential between the fire compartments, the wall or ceiling sealer membranes or expansion joints can be additionally equipped with carrier fabrics. The silicone rubber used can tolerate temperatures between -60°C and +200°C and has a lifetime of up to 40 years under normal conditions. Many test reports testify that the mechanical properties of the silicone rubber barely

change in response to extreme UV, weather and ozone loads. This silicone rubber is also halogen-free, dermatologically safe, and non-toxic. A radiation-proof version of silicone rubber was developed exclusively for use in nuclear power plants; this rubber still possesses sufficient elongation at rupture after 300 kGy of ionising radiation. For use in nuclear facilities, the surfaces of the elastic seals made from this silicone rubber can demonstrably be decontaminated without any problems.

Pipeline eccentricity

The medium pipes are rarely run precisely through the middle of the wall pipes. The position of the medium pipe relative to the wall pipe can easily be taken into account when manufacturing the wall and ceiling seals.

This will help you avoid expensive pipeline adjustments, and allows for strainless installation. The narrowest spot between the medium pipe and wall pipe is referred to as the X measurement.

Installation seam

In general, seals are installed after the pipeline is laid, and therefore need to be delivered with an installation seam. The stepped installation seam allows for easy installation and is closed using a cold-vulcanising silicone rubber glue. The position of the joint should be easily accessible to the fitter.

Fixing types

If possible, the seals are fixed to an overhead wall pipe and to the medium pipe using clamps. If no wall pipe is planned, the elastic seals can also be made with a flange and then attached to the wall using a clamping flange (see adjacent table).

To fix the flange to the wall, take the following into account: The fixing screws of size ≥ M8 or through wall anchors must have a Fire Safety Certification and should be fitted at a distance of 100 mm to ensure its impermeability to smoke. In addition, the fire protection bulkheads are covered with silicone glue to counterbalance any potential unevenness in the wall or ceiling. When selecting a appropriate approved fixing method, a few points need to be remembered and ascertained in advance:

- > Manufacturer Fire Safety Certification
 Often, not all sizes of the dowels or anchors in a product line possess the general building authority approval, even if the product documentation and labels list "general building authority approval" and "fire protection". In some cases, limitations are listed with respect to substrate and the type and height of the permitted
- > Fixing Not all dowels or anchors are certified for all common anchoring materials.

load.

ТҮРЕ		\	Wall pipe fixing	Medium pipe fixing				
W200SS	Jam J	Sleeve	Screw thread belt ½" or Small clamp width depending on ø: 9–12 mm	Sleeve	Screw thread belt ½" or Small clamp width depending on ø: 9–12 mm			
W200FS		Flange	Steel flange min. 30x6 mm Total clamp thickness 8 mm	Sleeve	Screw thread belt ½" or Small clamp width depending on ø: 9–12 mm			
W400SS		Sleeve	Clamp belt ¾"	Sleeve	Clamp belt ³ / ₄ " or Hinge bolt clamp width depending on ø: 18–30 mm			
W400FS		Flange	Steel flange min. 40x6 mm Total clamp thickness 8 mm	Sleeve	Clamp belt 3/4" or Hinge bolt clamp width depending on ø: 18–30 mm			
W410SS		Sleeve	Clamp belt ¾"	Sleeve	Clamp belt ³ / ₄ " or Hinge bolt clamp width depending on ø: 18–30 mm			
W410FS		Flange	Steel flange min. 40x6 mm Total clamp thickness 8 mm	Sleeve	Clamp belt ³ / ₄ " or Hinge bolt clamp width depending on ø: 18–30 mm			

> Edge distance to the breach

In order to prevent the material from breaking in the area of the connection, dowel and anchor manufacturers specify edge distances of between 50 and 100 mm, depending on the load. In general, we design with an edge distance of 50 mm between the breach and hole circle, since the force per dowel or screw is less than 0.25 kN for screw distances of approx. 100. All screws support only the weight of the expansion joint or membrane, and must ensure a reliable seal against the wall or ceiling.

> Material of the fixing screws

We recommend using galvanised steel in covered buildings and stainless steel fasteners outdoors.

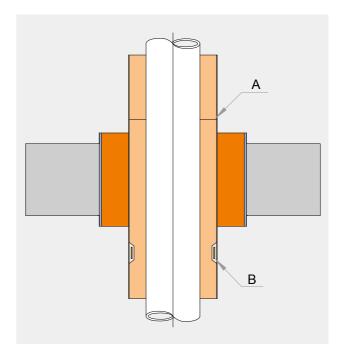
Wall pipe

The seals in a fire protection bulkhead should preferably be fastened to an overhanging wall pipe using clamps. When planning the fire protection bulkhead, we recommend using norm nominal bores for the wall pipes to the extent possible. The overhang should be 30 mm

for membranes and 60 mm for expansion joints. The required distance between individual wall pipes shall be:

 $\emptyset \le 200 \text{ mm}$ a $\ge 100 \text{ mm}$

 $\emptyset > 200 \text{ mm}$ a $\ge 200 \text{ mm}$

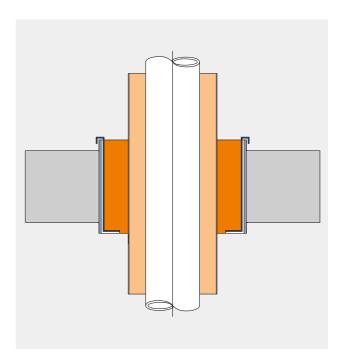

Sectional medium pipe insulation

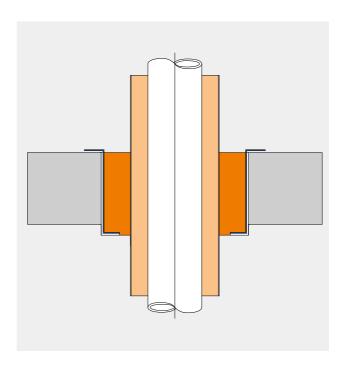
The insulation of a pipeline not only protects it against heat, cold and noise, but also actively contributes to structural fire protection. Depending on the diameter and wall thickness of the pipeline, it may have to be equipped with external insulation in the area of the wall or ceiling duct. This sectional medium pipe insulation should be made from non-flammable rock wool in materials class A1 with a melting point greater than 1000 °C. Standard pipe shells or rock wool mats are commonly used. If other insulation materials are used, e.g. closed-cell foamed plastic or foam glass, pay attention to the manufacturer's Building Supervisory certifications. In principle, the pipeline insulation needs to be designed such that fire and smoke cannot spread to the side facing away from the fire.

The surface of the insulation should be shielded throughout using galvanised steel or stainless steel plates at least 0,8 mm thick. If using sectional medium pipe insulation, the front faces should also be covered with sheet metal. Circular and longitudinal joints should be designed in the form of corrugations, and should be secured using sheet metal driving screws (distance \leq 150 mm), straps or clamp lever fasteners.

Sectional medium pipe insulation for ceilings

For ceiling ducts, the sectional medium pipe insulation should be secured against slippage by appropriate actions. For example, the insulation can be stayed using steel belt clamps (B) before fitting the steel plate sheathing or pins fixed to the medium pipes can hold the insulation. If the sectional medium pipe insulation consists of several parts, the clamp (B) must be fitted below the seam (A). For large diameters (> 400 mm), the medium pipe insulation should be reinforced in the fastening area of the wall or ceiling sealing membrane or the wall or ceiling sealing expansion joint. For instance, additional sheet metal strips can be installed there between the insulation and the surface shield.

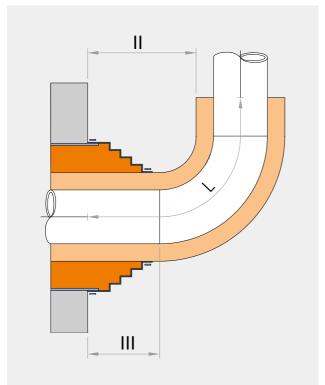


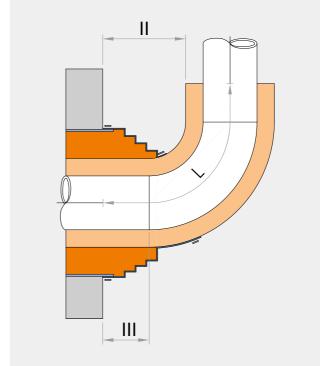

Ring gap and ring gap insulation

The ring gap is the distance between the wall pipe and the medium pipe or sectional medium pipe insulation. According to the Building Supervisory Certification, a ring gap between 10 and 100 mm is required. Mineral wool insulation with a density of $\geq 120 \text{ kg/m}^3$ in materials class A1 and with a melting point of $> 1000\,^{\circ}\text{C}$ will prevent the temperature and flames from spreading to the next fire compartment.

Brackets for ring gap insulation in ceiling ducts

For ceiling ducts, the ring gap insulation between the medium and wall pipes must be supported using several additional brackets around the circumference. Otherwise there is a risk that the ring gap insulation will slip during a fire. When designing the bracket layout, the lateral movement of the medium pipe must be taken into account. The bracket angles should be made using galvanised or stainless steel and must have a thickness of at least 2 mm.




Pipeline elbow

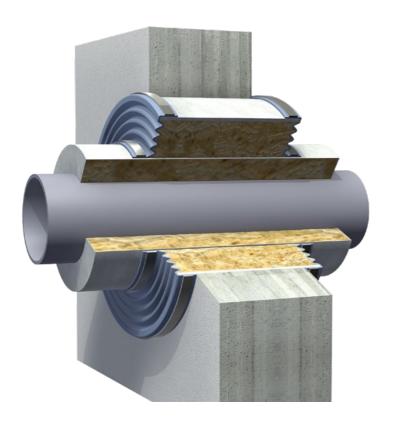
Our extensive experience with fire protection bulkheads has shown that pipeline elbows in the area of the bulkhead are often unavoidable. In principle, standard structural forms can be provided if the following points are taken into consideration to the extent possible.

For sectional medium pipe insulation, the required length (L) needs to be based on the neutral fibre of the medium pipe. The pipe clamp should be fitted outside the pipeline elbow (distance III). The thickness of the insulation should

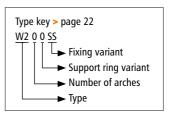
be taken into account when laying the pipeline (distance II). For large axial movements, the installation length of the membrane or expansion joint needs to be at least 300 mm in order to accommodate movements. If the construction site conditions do not allow for the installation of standardised structural forms, application-specific fire protection bulkheads can be manufactured. The clamping area can also be located in the elbow radius for these.

Installation

Our optimally equipped installation team will install wall seals for new construction or retrofitting activities; we can also appoint a field supervisor to train your workers and to support and monitor installation activities.


Measurements

Wall and ceiling seals are measured and manufactured after the pipeline is laid. This means that the location of the medium pipe with respect to the wall pipe and the position of the installation seam can be taken into account. The seals are dimensioned once the laid pipelines are in their final positions and the pipe insulation


is complete at least in the area of the bulkhead. All the information relevant to their manufacture is listed on a form. Please note that each wall or ceiling face should be listed separately and that the opposing positions should be listed as Pos. 1 and Pos. 1A. We will take the measurements for you if desired.

Distr	<u>Distribution list</u> : Orig./Oper./Inst./																CATA DESTINATION		
														Sheet:	of	-	X 1		
Date	of	Password: Structure: Order no.: Deadline:																	
issue	<u>e:</u>		EXA	MPL	E														
Pos.	Draw- ing	Room	Туре	D1	D2	D3	III	IV	Х	X1		II		E	Each	Produc- tion ready	Instal- lation ready	Move- ment	
5			W410SS	114.3	406.4			60	50		-				2				
Note:		All dimen	sions refer to	penetra	ition – th	e shape	of the	mem	brane	and ex	pansior	n joint	is dete	rmine	d by us	5.	!	!	
Pos. Type D1:	5:	_	n no. '200SS, \ diameter					latio	n lay	er									
D2:			diameter																
D3:			diameter																
III: IV:			ce from v of wall				icle, (e.g.	weld	sea	m								
X:		_	listance l			_	and	wal	l nin	e dia	mete	r							
X1:			lid for W			ararrr	ana	vvan	, bib.	c ala	mete	'							
		Only st	ated in c	onnec	tion w	ith ">	(" (se	e sk	etch)	if th	е ехр	ansid	on joi	nt n	eeds	to be a	djusted	to the	
-			shape, e						sma	all									
X			on of sea										,					1)	
 :			n of "X" ce betwe													n to be	determii	ned)	
II. L:			g length								_								
E:			ength of			•		-	_							ned by i	us)		
x/y			ateral mo					. ,			•	,					,		
			Date/Sta	amp/Sig	nature								_		Da	ate/Stamp	/Signatur	e	ı
Acce	Acceptance Measurement/installation confirmed																		

W200SS + W200SS for wall pipes up to Ø 400 mm, medium pipes up to Ø 150 mm

> Type W200SS + W200SS

Fire penetration seal for wall tubes up to \varnothing 400 mm

Design: Air- and splash water-tight fire bulkhead sealing for 120 min

fire resistance for pipe penetrations through walls and ceilings. Bothsided, straight or folded penetration seal membranes with all-directional movement capability, made from extremly flexible thin silicone materials, and with fixing clamps (type W200SS) or multi-part backing flanges (type W200FS). Available round or rectangular styles, also offset designs for pipe misalignment and spilt wrap designs available for field installation around existing penetrating pipe applications. Fire resistance test acc. DIN EN 1366-3, approval acc. DIN 4102 part 11. Technical details must be

followed according to Building Authority Approval.

Diameters: System approval for wall pipes up to \emptyset 400 mm and for medium

pipes up to Ø 150 mm

Length: W200SS or W200FS standard 60 mm

Custom length on request

Pressure: Up to \pm 20 mbar

Movement: For axial and lateral movements → ↓ ↓ (> page 327)

Wall pipe: Distance "a" between individual penetrations:

for wall pipes $\emptyset \le 200$ mm a ≥ 100 mm, $\emptyset > 200$ mm a ≥ 200 mm

Wall pipe thickness (> page 327)

Application:
Power plants, plant
construction, turbine
houses, R120 fire

penetration sealing for pipes with axial and lateral movements

Tested according to DIN 4102 Section 11 General Building Supervision Certificate MPA Braunschweig No. P-3740/4280-MPA BS

Request assembly instructions at: www.ditec-adam.de/

Medium pipe Mineral wool insulation (materials class A1, melting point > 1000 °C)

insulation: The surface of this insulating material should be shielded with galvanised or stainless steel

sheet with a thickness of min. 0.8 mm Length and thickness (> page 327)

Ring gap: Distance between wall and medium pipe or medium pipe insulation from 10 mm to 100 mm

Ring gap stuffing with mineral wool (materials class A1, melting point > 1000 °C)

Stuffing density $\geq 120 \text{ kg/m}^3$ (usually supplied by others)

Ring gap insulation of ceiling penetrations must be secured against slippage using several

brackets around the circumference

Pipe hanger: Distance of next pipe hanger to wall / ceiling: 400 mm for $\leq \emptyset$ 150 mm and

1,400 mm for $> \emptyset$ 150 mm medium pipe diameter

Wall/ceiling thickness: Min. 240 mm concrete, reinforced concrete or gas concrete

Bellows elastomers

Elastomers			
up to 200°C	Silicone Q	Air, water, saltwater atmosphere Special compound	
	Silicone (special)	Special compound with certifications for nuclear applications	

Clamps

Design: Screw thread belt or small clamps

Width: Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm

Materials: Screw thread belt with threaded screw lug: 1.4310

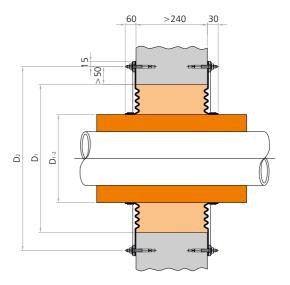
Small clamp, belt and housing: 1.4016 (Screw steel galvanised)

Backing flanges

Design: Multi-part clamping flange with clearance holes

Flange norms: According to specification

Materials: Carbon steel, stainless steel


Coating: Primed, hot-dip galvanised, special paint

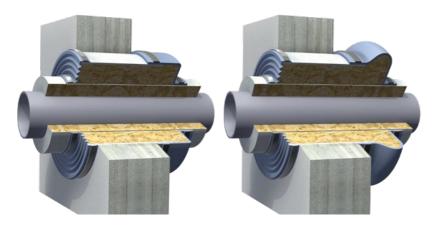

326 Penetration seals

Cross section W200SS + W200SS

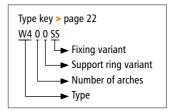
30 30 >240 30 30 a 30 30 >240 30 30

Cross section W200FS + W200FS

Flexible air-tight fire penetration seal of type W200SS \pm W200SS in a nuclear power plant


	ntial nations	Wall pipe	Requ medium pip	uired e insulation		OSS + W2 Movement	
Wall pipe D ₁	Medium pipe D ₁₋₂	Thickness	Length ≥	Thickness	***		
mm 50	mm 10 15 20 25 32	mm ≥ 3,2 ≤ 14,2	mm	mm	mm 15 14 12 9	mm 15 14 12 9 6	mm 13 12 10 8 5
65	15 20 25	≥ 3,2 ≤ 14,2			19 17 15	19 17 15	16 15 13
80	10 15 20 25	≥ 3,2 ≤ 14,2			25 24 22 19	25 24 22 19	22 20 19 17
100	15 20 25 32 40	≥ 3,2 ≤ 14,2			33 31 28 11 9	33 31 28 11 9	28 26 24 10 8
125	20 25 32 40 50	≥ 3,0 ≤ 14,2			39 37 20 18 7	39 37 20 18 7	34 32 17 15
150	32 40 50 65 80	≥ 3,0 ≤ 14,2	700 700	30 30	30 28 17 11 7	30 28 17 11 7	26 24 14 10 6
200	40 50 65 80 100	≥ 3,0 ≤ 14,2	700 700 700	30 30 30	46 35 29 25 16	46 35 29 25 16	39 30 25 21 13
250	65 80 100 125 150	≥ 3,0 ≤ 14,2	700 700 700 700 700	30 30 30 30 30	48 43 35 26 16	48 43 35 26 16	41 37 30 22 13
300	65 80 100 125 150	≥ 3,0 ≤ 14,2	700 700 700 700 700	30 30 30 30 30	66 61 52 43 33	66 61 52 43 33	56 53 45 37 29
350	80 100 125 150	≥ 3,0 ≤ 14,2	700 700 700 700	30 30 30 30	70 63 55 45	70 63 55 45	60 54 47 38
400	100 125 150	≥ 3,0 ≤ 14,2	700 700 700	30 30 30	70 70 62	70 70 62	60 60 53

Above data refer to wall penetrations only; for ceiling penetration please contact our sales department. Other combinations possible.


The movements listed are based on a concentric position of the medium pipe in relation to the wall pipe as well as minimal medium pipe insulation thicknesses and a maximum ring gap of 100 mm. Larger movements on request.

W200SS + W400SS W200SS + W410SS

for wall pipes up to Ø 900 mm, medium pipes up to Ø 600 mm

- > Type W200SS + W400SS without arch for small movements
- > Type W200SS + W410SS with arch for large movements

Fire penetration seal for wall tubes up to \emptyset 900 mm

Design: Air- and splash water-tight fire bulkhead sealing for 120 min

fire resistance for pipe penetrations through walls and ceilings. Penetration seal membrane (type W200SS) and straight (type W400SS) or single-arch (type W410SS) expansion joint with all-directional movement capability, made from flexible silicone materials, and with fixing clamps (type W200SS / W400SS / W410SS) or multi-part backing flanges (type W200FS / W400FS / W410FS). Available round or rectangular styles, also offset designs for pipe misalignment and spilt wrap designs available for field installation around existing penetrating pipe applications. Fire resistance test acc. DIN EN 1366-3, approval acc. DIN 4102 part

11. Technical details according to Building Authority Approval.

Diameters: System approval for wall pipes up to \varnothing 900 mm and for medium

pipes up to Ø 600 mm

Length: W200SS or FS standard 60 mm

W400SS or FS standard 180 mm W410SS or FS standard 210 mm Custom length on request

Pressure: Up to \pm 20 mbar

Movement: For axial and lateral movements ↔ ↓ ↓ ↓ ↓

(> page 332–333)

Wall pipe: Distance "a" between individual penetrations:

for wall pipes $\emptyset \le 200$ mm a ≥ 100 mm, $\emptyset > 200$ mm a ≥ 200 mm

Wall pipe thickness (> page 332-333)

Application:

Power plants, plant construction, turbine houses, R120 fire penetration sealing for pipes with axial and lateral movements

Tested according to DIN 4102 Section 11 General Building Supervision Certificate MPA Braunschweig No. P-3740/4280-MPA BS

Request assembly instructions at: www.ditec-adam.de/en/contact

Medium pipe Mineral wool insulation (materials class A1, melting point > 1000 °C)

insulation: The surface of this insulating material should be shielded with galvanised or stainless steel

sheet with a thickness of 0.8 mm

Length and thickness (> page 332-333)

Ring gap: Distance between wall and medium pipe / medium pipe insulation from 10 mm to 100 mm

Ring gap stuffing with mineral wool (materials class A1, melting point > 1000 °C)

Stuffing density $\geq 120 \text{ kg/m}^3$ (usually supplied by others)

Ring gap insulation of ceiling penetrations must be secured against slippage using several

brackets around the circumference

Pipe hanger: Distance of next pipe hanger to wall / ceiling: 400 mm for $\leq \emptyset$ 150 mm and 1,400 mm

for $> \emptyset$ 150 mm medium pipe diameter

Wall/ceiling thickness: Min. 240 mm concrete, reinforced concrete or gas concrete

Bellows elastomers

Elastomers		
up to 200°C	Silicone Q	Air, water, saltwater atmosphere
	Silicone (special)	Special compound with certifications for nuclear applications

Clamps

Design: Depending on pressure and diameter, endless clamp belt, screw thread belt, small clamps or

hinge bolt clamps. At higher pressures, 2 parallel clamps per side

Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm Hinge bolt clamp: depending on Ø: 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310

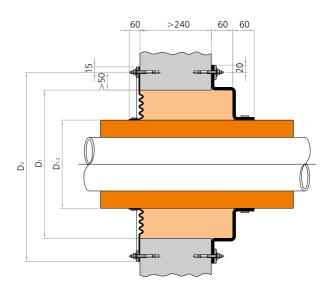
Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Backing flanges

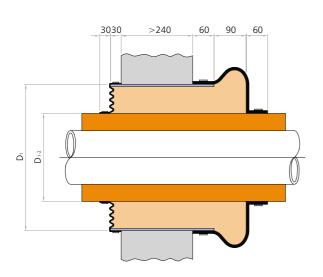
Design: Multi-part clamping flange with clearance holes

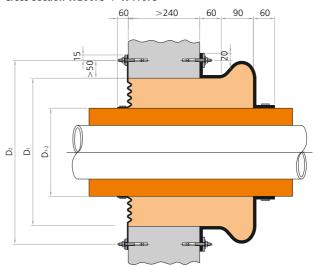
Flange norms: According to specification

Materials: Carbon steel, stainless steel


Coating: Primed, hot-dip galvanised, special paint

330 Penetration seals


Cross section W200SS + W400SS


Cross section W200FS + W400FS

Cross section W200SS + W410SS

Cross section W200FS + W410FS

Fire protection bulkhead of type W200FS \pm W410FS for large pipe movements between machines house and boiler house

W200SS + W400SS

> without arch for small movements

	ntial nations	Wall pipe	Requ medium pip			W200SS + W400SS Movement	
Wall pipe D₁	Medium pipe D ₁₋₂	Thickness	Length ≥	Thickness	***		
mm	mm	mm	mm	mm	mm	mm	mm
350	200	≥ 3,0 ≤ 14,2	1600	40	6	6	5
400	200 250	≥ 3,0 ≤ 14,2	1600 1600	40 40	15 6	15 6	13 5
450	125 150 200 250 300	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	35 35 24 15	35 35 24 15 6	30 30 21 13 5
500	150 200 250 300 350	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	35 33 24 15 9	35 33 24 15 9	30 28 20 13 8
550	200 250 300 350 400	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	35 33 24 18 9	35 33 24 18 9	30 28 20 15 8
600	250 300 350 400 450	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	35 32 27 18 9	35 32 27 18 9	30 28 23 15 8
650	300 350 400 450 500	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	35 35 27 18 9	35 35 27 18 9	30 30 23 15 8
700	350 400 450 500 550	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	35 35 27 18 9	35 35 27 18 9	30 30 23 15 8
750	400 450 500 550 600	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	35 35 27 18 9	35 35 27 18 9	30 30 23 15 8
800	450 500 550 600	≥ 3,0 ≤ 14,2	1600 1600 1600 1600	40 40 40 40	35 35 27 18	35 35 27 18	30 30 23 15
850	450 500 550	≥ 3,0 ≤ 14,2	1600 1600 1600	40 40 40	35 35 27	35 35 27	30 30 23
900	450 500	≥ 3,0 ≤ 14,2	1600 1600	40 40 40	35 35	35 35	30 30

Above data refer to wall penetrations only; for ceiling penetration please contact our sales department. Other combinations possible.

The movements listed are based on a concentric position of the medium pipe in relation to the wall pipe as well as minimal medium pipe insulation thicknesses and a maximum ring gap of 100 mm.

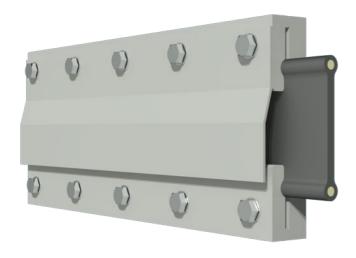
Larger movements on request.

	ntial nations	Wall pipe		Required W200SS - medium pipe insulation Move			
Wall pipe D ₁	Medium pipe D ₁₋₂	Thickness	Length ≥	Thickness	***		
mm	mm	mm	mm	mm	mm	mm	mm
350	200	≥ 3,0 ≤ 14,2	1600	40	12	12	10
400	200 250	≥ 3,0 ≤ 14,2	1600 1600	40 40	31 12	31 12	26 10
450	125 150 200 250 300	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	70 70 48 29 12	70 70 48 29 12	60 60 41 25 10
500	150 200 250 300 350	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	70 66 47 29 18	70 66 47 29 18	60 57 41 25 16
550	200 250 300 350 400	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	70 65 47 36 18	70 65 47 36 18	60 56 40 31 16
600	250 300 350 400 450	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	70 65 54 36 18	70 65 54 36 18	60 56 46 31 16
650	300 350 400 450 500	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	70 70 54 36 18	70 70 54 36 18	60 60 46 31 16
700	350 400 450 500 550	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	70 70 54 36 18	70 70 54 36 18	60 60 46 31 16
750	400 450 500 550 600	≥ 3,0 ≤ 14,2	1600 1600 1600 1600 1600	40 40 40 40 40	70 70 54 36 18	70 70 54 36 18	60 60 46 31 16
800	450 500 550 600	≥ 3,0 ≤ 14,2	1600 1600 1600 1600	40 40 40 40	70 70 54 36	70 70 54 36	60 60 46 31
850	450 500 550	≥ 3,0 ≤ 14,2	1600 1600 1600	40 40 40	70 70 54	70 70 54	60 60 46
900	450 500	≥ 3,0 ≤ 14,2	1600 1600	40 40	70 70	70 70	60 60

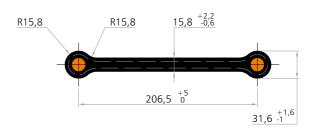
Above data refer to wall penetrations only; for ceiling penetration please contact our sales department. Other combinations possible.

The movements listed are based on a concentric position of the medium pipe in relation to the wall pipe as well as minimal medium pipe insulation thicknesses and a maximum ring gap of 100 mm.

Larger movements on request.



Dog bone expansion joint


Dog Bone Expansion Joint

> 336

Dog bone expansion joint

Cross section Dog bone

Dog bone expansion joint

Design:

Straight rubber belt type expansion joint with self-sealing rubber knobs on both sides to insure leak tightness, designed to compensate axial compression and lateral movements, constructed of laminated fabric plies, tied to a solid bulb core, all bonded, covered in rubber and vulcanised. Dog bone types with molded arch are also available.

It is initially furnished with specially machined steel clamping fixtures, as a component of the condenser. As standard, it is designed to operate under full vacuum and at temperatures up to 120°C. Future replacements typically involves changing the rubber element only.

All dog bone joints will require a splice to make endless. Only one splice per joint is necessary. For new construction, most dog bones can be supplied with a factory splice. Subsequent replacements, most often require a field splice, due to added interference with the condenser. In any case, splicing should be done by experienced technicians.

Length: According to customer specification

Width: Standard = 240 mm

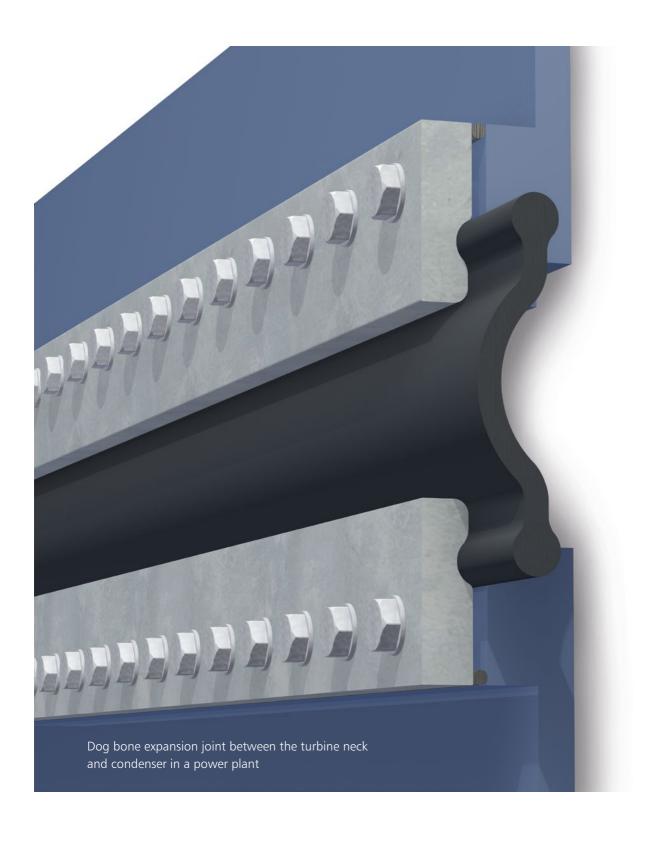
Media: Water, steam, air

Pressure: +1,5 bar / full vacuum

Movements: Axial compression = 30 mm (max.)* Axial extension = 3 mm Lateral displacement = 16 mm

zaterar arspracerrerre

Record ins

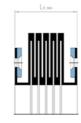

Application: Dog bone expansion joints are used as flexible connection between turbines neck and condensers in power generating stations, to isolate low pressure steam turbines from condensers. One of its main functions is to absorb the differential thermal compression and lateral movements of the two components, as the equipment heats and expands during operation. Dog bone expansion joints transfer minimal forces and moments on the turbine exhaust flange.

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	°C	Remark
EPDM	Polyamid	up to 100°C	with peaks of 120°C for max. 36 hours during whole service life
EPDMht	Aramid	up to 120°C	with peaks of 140°C for max. 36 hours during whole service life
CR	Polyamid	up to 90°C	with peaks of 110°C for max. 36 hours during whole service life
FPM	Aramid	up to 140°C	with peaks of 160°C for max. 36 hours during whole service life


Rubber moulded parts


Disc Bellows	> 340
Vulcanized Rubber Gaskets	> 342
Custom Moulded Rubber Products	> 344

Disc bellows Ø 100 - 4,000 mm

Cross section Disc Bellows

Design: Round disc bellows made of rubber with customised number and

depth of folds with sleeve or flanged fixture. Produced on a single

piece or small-batch basis.

Bellows are dust- and liquid-proof, have excellent dimensional stability, extremely short compressed length, and are suitable for vertical, horizontal and diagonal use. Depending on length and use, furnished with guides, or wire rings for stabilization. On

request, provided with suitable ventilation openings.

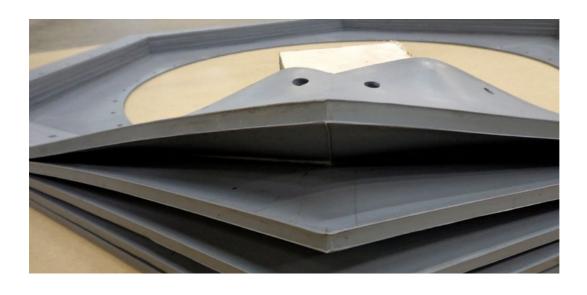
Diameters: \emptyset 100 to 4,000 mm

Length: Depending on $L_{min} = folds$ completely flattened onto

block and $L_{max} = maximum length$

Pressure: Pressureless

Axial Depth of fold Ft = (D4-D1)/2 **Movement:** Number of folds $Fz = L_{max}/Ft$


 $L_{min} = Fz \times S_1 \times 2$ $L_{max} = L_{min} + stroke$

Application:

Protective covers for hydraulic and pneumatic cylinders, threaded spindles, and processing machines. Machine components are reliably protected against dust, dirt, sawdust and metal filings, or liquids

Request assembly instructions at: www.ditec-adam.de/en/contact

Bellows elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology

Installation variants

	Fixing variant 1	Fixing variant 2		Fixing variant 1	Fixing variant 2
_\\\\\	Sleeve	Sleeve	LWW	Spacer flange	Flange
////	Sleeve	Sleeve with different diameters	LWW_	Spacer flange	Sleeve
WWW	Flange	Flange	[WWV]	Spacer flange	Spacer flange with different diameters
WW_	Flange	Sleeve	LWW-	Spacer flange	Sleeve with different diameters
[WW]	Spacer flange	Spacer flange	WW _	Flange	Sleeve with different diameters

Vulcanized rubber gaskets Ø up to 4,000 mm

Ø up to 4,000 mm

Ø up to 4,000 x 4,000 mm

Ø up to 6,000 x 3,000 mm

Design:

One-piece homogeneously mold-vulcanized round, rectangular or oval shaped rubber gaskets, with or without reinforcements to suit to different design pressures and temperatures. Inserts can be from synthetic fabrics, wire mesh or metal. Can be provided against specification, thickness suitable to service conditions, and suitably molded for all flange dimensions. Rubber gaskets to be made as full flat face, optionally with protrusion, recess, impressed O-ring or in special design according to drawing.

Gaskets are individually manufactured from several separate unvulcanized rubber sheets and appropriate elastomer laminated reinforcements and vulcanized afterwards to one single rubber part without seam or glueing. Standard surface of the gasket is textile pattern or shiny.

Large range of different elastomers on stock individually chosen for service medium, also in conformity with food regulations according FDA or 1935/2004. Rubber grades with proven radiation resistancy also available.

Dimensions: \varnothing up to 4,000 mm

 \square up to 4,000 x 4,000 mm \square up to 6,000 x 3,000 mm Custom sizes and forms possible

Flange norms: DIN, ANSI, EN, AWWA, BS, JIS, special measurements

Thickness: Standard up to 50 mm

Custom thickness and inserts on request

Pressure: Up to 100 bar

Application: Flange connections of ducts, pipelines, valves, tanks, man holes, or other pipeline equipment of the chemical, petrochemical, pharmaceutical and food industry, for refineries, power plants, steel and paper mills, ore dressing plants, ship building industry and all other kind of industries where flange connections must be sealed with rubber gaskets

Elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology
PTFE lamination	on: one- or bo	oth-sided a	lternatively av	vailable

Custom moulded rubber products

Design:

We develop moulded rubber parts such as sleeves, membranes, bellows, profiles, hoses or seals together with you for your special application or manufacture them individually according to your specifications.

Due to our comprehensive knowledge and because of our vulcanisation possibilities, we are specialised in the production of large-volume moulded rubber parts. We are your ideal partner for one-off and small batch production, especially when it comes to special requirements for the rubber material, the geometry of the moulded part or precision. We process all types of commercially available elastomers, can reinforce them with fabrics or also combine them with PTFE or metals.

The required moulds are economically produced from a wide range of materials on modern CNC machines in our pattern shop.

Dimensions: Custom size, length and forms

Thickness: Custom thickness and inserts on request

Pressure: Up to 100 bar depending on design and dimensions

Application:

We supply in all areas of mechanical and plant engineering, rail vehicle construction, energy and handling technology as well as agricultural, food and textile industry and environmental technology

Request assembly instructions at: www.ditec-adam.de/

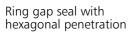
Elastomers and reinforcements

Elastomer	Fabric	Marking	°C	Application
EPDM	Polyamid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDM	Aramid		-40 +100	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMht	Aramid		-40 +120	Cooling water, hot water, seawater, acids, dilute chlorine compounds
EPDMwras	Polyamid		-40 +100	Drinking water, foodstuffs
EPDMwras	Aramid		-40 +100	Drinking water, foodstuffs
EPDMbeige	Polyamid		-40 +100	Foodstuffs
EPDMbeige	Aramid		-40 +100	Foodstuffs
IIR	Polyamid		-20 +100	Hot water, acids, bases, gases
IIR	Aramid		-20 +100	Hot water, acids, bases, gases
CSM	Polyamid		-20 +100	Strong acids, bases, chemicals
CSM	Aramid		-20 +100	Strong acids, bases, chemicals
NBR	Polyamid		-30 +100	Oils, petrol, solvents, compressed air
NBR	Aramid		-30 +100	Oils, petrol, solvents, compressed air
NBRbeige	Polyamid		-30 +100	Oil, fatty foods
NBRbeige	Aramid		-30 +100	Oil, fatty foods
CR	Polyamid		-20 +90	Cooling water, slightly oily water, seawater
CR	Aramid		-20 +90	Cooling water, slightly oily water, seawater
FPM	Aramid		-20 +180	Corrosive chemicals, petroleum distillates
FPMbeige	Aramid		-20 +180	Oil, fatty foods
NR	Polyamid		-20 +70	Abrasive materials
Silicon	Aramid Glass		-60 +200	Air, saltwater atmosphere, foodstuffs, medical technology
PTFE laminatio	n: one- or bo	oth-sided a	Iternatively av	ailable

Rubber elements

Silicone rubber seal vulcanized to foam rubber for a cheese lifter

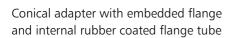
346 Rubber moulded parts



Inflation bellows

Expansion bellows

Silicon ring gap seal



Rubber bend in pressure test \varnothing 100 mm, 40 bar

Double-walled expansion joint in a coal pulveriser with a connection for a leak sensor \varnothing 250 - 140 mm

Expansion bellows, oval, as actuating rod protection

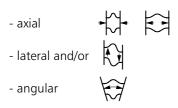
FPM rubber cone from round to rectangular, with stainless steel flow liner test pressure $2.5\ \text{bar}$

FPM rubber cone

Cheese lifter rubber bumper

Fabric expansion joints

Technical Information	> 353
Planning	> 354
Expansion joint technology	> 356
Flange Expansion Joints	> 365
Ducting expansion joints	> 366
Belt Expansion Joints	> 371
Ducting expansion joints	> 372
Expansion joints on duct angles	> 376
Expansion joints on duct angles with pre-insulation bolster	> 380
Expansion Joints for Smoke Escape Ventilation and EX Protection Zones	> 387
Expansion joints for smoke escape	> 388
Expansion joints for ventilation and air conditioning systems	> 392
Expansion joints with explosion protection	> 394


Technical information

Planning

Installation location	> 354
Design criteria	> 355
Expansion Joint Technology	
Bellows construction	> 356
Fixing types	> 358
Insulation and accessories	> 359

Planning > Installation location

Fabric expansion joints are specially designed and dimensioned for each application with regard to the operating conditions in question. In addition to the dimensions, we need information about the medium, temperature, pressure and movements. The pipeline expands at operating temperature. Depending on the configuration of the fixed and sliding points, such stretching is accommodated by the expansion joint in an

direction. The thermal expansion must be determined when planning the pipeline, and will influence the choice of expansion joint construction shape as well as the choice of optimal installation length.

Our comprehensive customer service includes, in addition to on-site measurements, the complete engineering process, manufacture at our Kitzingen factory in Germany, installation or installation monitoring, the acceptance of newly installed expansion joints, as well as regular inspections of the expansion joints at your facility. As accessories for all expansion joint types, we are able to deliver backing flanges, clamp bars, support rings, flow liners or installation-ready units from our own production line.

For complete installation or for closing the expansion joint at the installation location, we have a factory installation crew and installation supervisor with many years of installation experience as well as extensive expansion joint training.

Accessibility of installation location

When planning new facilities, the accessibility of the installation location should be taken into account with regard to the installation of the expansion joint, especially if welded flow liners or duct lining require that expansion joints be delivered with an installation seam, and this seam can only be closed on site.

External influences

If the expansion joints are installed in the open, we recommend using protective coverings against external influences such as rain, snow, ozone or UV radiation. These are also contact protection as well as avoid external mechanical damage. Protective covers prevent the expansion joint from convecting freely in the event of high ambient temperatures combined with high media temperatures. In this case, special materials for the sealer and external layers, as well as forced air circulation or radiation protection shields, protect the expansion joint from overheating.

Find out more on our website at www.ditec-adam.de/qr/movements

Planning > Design criteria

The exact operating parameters and constraints are needed to design the expansion joint. Temperature information that is higher than actual operating temperatures may lead, for instance, to the expansion joints being designed with unnecessary insulating layers, which has an unfavourable effect on pressure tightness in the fixing area.

The following criteria have an effect on the design of the expansion joint:

Medium

The medium, in conjunction with the operating temperature and operating pressure, determines which material is selected for the construction of the expansion joint. The following media properties should be taken into account:

- > Crude or scrubbed gases
- > Solid fraction (load and particle size)
- > Chemical composition (acids, bases, solvents, radiation)
- > Flue gas from coal, oil or gas firing
- > Dry or wet medium
- > Duct rinsing or cleaning

In the event of flow rates greater than 30 m/s, we recommend using flow liners in order to avoid turbulence in the area of the expansion joint. Due to the rebound elasticity of the rubber, for elastomer expansion joints, the flow liner can be dispensed with in the event that the medium exhibits a low solid fraction and high flow speeds.

Depending on where the joint is installed along the duct, e.g. after a bend or if the installation is horizontal, vertical or diagonal, the solids in the medium may expose the expansion joint to wear. The volume and particle size of these solids influence the choice of material. In the event of high concentrations of dust, soot, flue ash or similar solids, we recommend that you use flow liners.

Temperature

In addition to the operating temperature, it is important to know the maximum possible temperature in the event of an accident or the design temperature when selecting the bellows material. The medium temperature also determines whether the expansion joint can be installed at the duct level or if a duct angle needs to be used to establish a distance from the hot medium. In the event of a high ambient temperature, e.g. in the vicinity of a boiler or for expansion joints in housings, this also constitutes a design criterion.

If there is a risk of falling below the dew point and for medium temperatures of up to 220 °C, we recommend insulating the expansion joints from outside. Otherwise condensation may form and corrode the duct or lead to leaks in the expansion joint connection area. Since condensation constitutes yet another chemical strain, forecasted situations where the temperature might fall below the dew point must be specified, especially in the event of process-dependent start-up or shut-down or in the event of partial load operation. Dew point shortfalls influence the design of the expansion joint as well as the selection of the construction material.

Pressure

In addition to temperature, pressure determines both the material and the design of the expansion joint. For high pressure, we recommend using flange expansion joints, since these can handle high pressure-tightness requirements as a result of their clamping. You should also check whether additional design measures are needed, such as the use of pressure support rings or vacuum support rings. If pressure oscillations or pressure surges are anticipated, please specify them.

Movements

Depending on the type, fabric expansion joints can accommodate large movements in an axial, lateral or angular direction. Axial and lateral movement mostly occur in combination, and it is important to know which movement will occur first during start-up or shut-down. The movements to be accommodated determine the design and the installation gaps to be used for the expansion joint. Large movements can be distributed across several expansion joints in some cases.

Expansion joint technology > Bellows construction

For fabric expansion joints, there are no stiffness rates acting on the adjacent ducts, contrary to steel or rubber expansion joints. These need comparatively little installation space even for large movements.

Each fabric expansion joint is individually adapted to the conditions, and our technicians decide whether to use an elastomer or multilayer expansion joint when preparing a quotation.

Elastomer expansion joints

This is a single-layer expansion joint made from rubber, approx. 3 to 6 mm thick, with one or more reinforcement carriers. Elastomer expansion joints are characterised by their gas-tightness and drip-tightness, even if there is condensation. The maximum deployment temperature is 200 °C. The choice of rubber grade depends on the operating temperature and the medium. This decision is made on the basis of our extensive experience and with regard to relevant durability tables.

The following table provides an overview of the elastomers we handle. For the most corrosive media, we can furnish the expansion joint with an additional interior PTFE lining, which is firmly joined to the rubber bellows. PTFE is resistant to a number of chemicals and to many different mixtures, and can for that reason be used in the event of corrosive chemical attack.

Rubber grades				
up to 100°C:	EPDM	Flue gases, acids, bases, rinsing acids, dilute chlorine compounds, cooling water, hot water		
	EPDM, drinking water approved	Drinking water		
	EPDM, white, food grade	Foodstuffs		
	EPDM, insulating	Electrical systems construction		
	IIR	Acids, bases, gases		
	CSM	Strong acids, bases, chemicals		
	NBR	Oils, petrol, solvents, compressed air		
	NBR, bright, food grade	Oil, fatty foods		
up to 80°C:	CR	Cooling water, slightly oily water, seawater		
up to 70°C:	NR	Abrasive media		
up to 180°C:	FPM	Corrosive chemicals, petroleum distillates		
up to 200°C:	Silicon (Q)	Air, saltwater atmosphere		
	Silicon (Q), white, food grade	Foodstuffs, medical technology		
PTFE lining:	Permanently embedded against chemical attacks on the interior at the rubber bellows, available starting at \varnothing 300 mm.			

Multilayer expansion joints

These consist of one or more superimposed insulating layers, a chemically resistant sealing film, and an external skin that ensures that the expansion joint maintains its shape under pressure. For simple applications, single-layer expansion joints are used. In general, these consist of a thin rubber or PTFE film with a fabric reinforcement.

Insulating layers

The function of the internal insulating layers is to dissipate the medium temperature out to the sealing films located further to the outside. Insulating layers consist of a glass fibre fabric or glass felt, ceramic fabrics or ceramic fibre mats, or of a combination of these materials.

Sealing films

For almost all applications, these consist of PTFE film, and take over the actual sealing function of the expansion joint. The PTFE film may also be laminated onto glass fibre fabric on one or both sides, and ensures the necessary pressure tightness of the expansion joint for this material design as well. PTFE is chemically resistant to almost all media. In rare cases with extreme temperature requirements or high ambient temperatures in addition, stainless steel films are used. As opposed to PTFE film, which is welded to be gas-tight, stainless steel films are simply clinched tight and are only sufficient for low impermeability requirements.

External layer

The external layer is usually a silicon-based glass fibre fabric or, in the event of harsh environmental conditions, a PTFE-coated glass fibre fabric. This layer is the pressure carrier and provides mechanical protection against external damage and weather effects. The choice of the external layer also depends on whether the expansion joint can be delivered in a closed state and thus already made "endless" at the factory, or if it needs to be designed with an installation seam.

Materials		
Insulating layers:	up to 400°C:	Glass fibre fabric, glass mat
	up to 800°C:	High temperature-resistant glass fibre fabric
	up to 1050 °C:	Silicate fabric
	up to 1200 °C:	Ceramic felt
Sealing layer:	up to 220°C:	PTFE film
	up to 450°C:	V4A film
	up to 900°C:	Alloy film
External layer:	up to 100°C:	EPDM film with polyester fabric
	up to 200°C:	Silicon film with glass fibre fabric insert
	up to 220°C:	Glass fibre fabric with PTFE coating

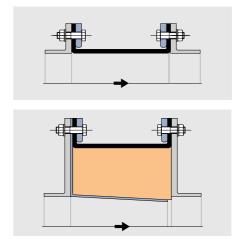
Tightness

Expansion joints with a wall thickness of up to 6 mm and for an operating pressure of up to 0.3 bar are elastomer expansion joints. These are gas-tight and drip-proof. Rubber expansion joints are used at higher pressure.

In multilayer expansion joints, the inner insulating layers in the clamping area lead to marginal diffusion. The bellows itself is gas-tight as a result of its sealing layer. Multilayer expansion joints are therefore only considered impermeable to flue gas, whereas elastomer expansion joints are impermeable to nekal.

Multilayer expansion joints are not impermeable to drips, and precautions may have to be taken in the design phase. Up to 220 °C, multilayer expansion joints can be manufactured for relative high gas-tightness requirements. These are furnished with an inner layer of PTFE-coated glass fibre fabric that is then sealed using a PTFE sealing belt or a temperature-resistant rubber seal against the duct flange. In this case, these seals are attached to the expansion joint at the factory.

Expansion joint technology > Fixing types

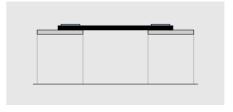

The distance between the ends of the pipeline and the duct flanges or duct angles is dependent on the axial and lateral movements. Guideline values for determining the installation gaps can be found under the respective expansion joint types. In principal, the expansion joint

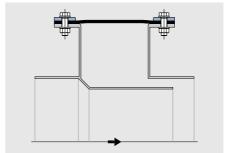
should only be compressed or displaced by a quarter of its original installation length, since extreme compression can lead to buckles, and thus also to heat pockets and overheating. Our technicians will be happy to help you determine the optimal installation gap.

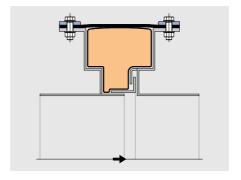
Flange expansion joints

In this fixing variant, flanges are built onto the expansion joint bellows, which are then pressed against the duct flanges using the backing flanges. This construction is able to meet high impermeability requirements. The temperature limit for flanged expansion joints is approx. 400°C.

At high temperature, the duct flanges need to be enlarged in order to create distance between the expansion joint and the duct. Pre-insulation ensures additional temperature dissipation.

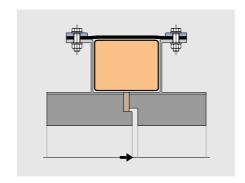



Belt expansion joints

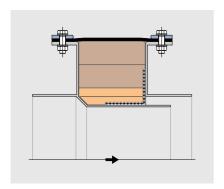

The belt design is the simplest way to join an expansion joint to a pipeline. For small dimensions and round duct cross sections, the expansion joint is attached directly to the pipeline using clamps. This design can be used for maximum temperatures of up to 400 °C.

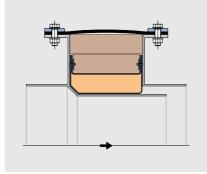
For temperatures greater than 400 °C, there needs to be a distance separating the expansion joint and duct. Angle profiles are also welded on, to which the expansion joint is then fixed using clamp bars. The height of the duct angle is dependent on the medium temperature, and is between 100 and 200 mm. The clamp bars must be designed with slotted holes to allow the expansion joint to be pressed on. For rectangular ducts, the corners must be furnished with a radius that corresponds to the height of the angle profile.

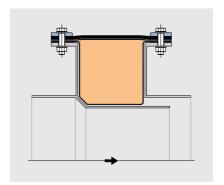
For high temperatures, we recommend that the duct angle be edged in order to reduce heat stress. This design is suitable for both round and rectangular ducts.



To shield against high temperatures, these expansion joints are often furnished with pre-insulation. In conjunction with a lined duct, such a design can be used up to 1200 °C.

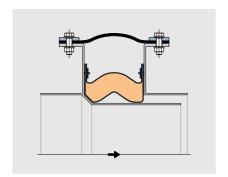


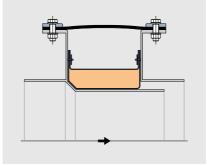

Expansion joint technology > Insulation and accessories


Pre-insulation

Pre-insulation reduces the medium temperature up to the expansion joint bellows and protects it against dust. It also supports the expansion joint in the event of pressure variations, and contributes to sound insulation. The pre-insulation layer is installed between the expansion joint bellows and the flow liner. It consists of individual,

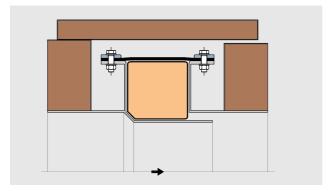
loosely superimposed layers of wire mesh, ceramic felt and mineral wool, or of pre-fabricated insulation pillows. Pre-insulation is added either to the flow liner or laterally to the construction angles using insulation spikes. In rare cases, insulating pillows are fixed together with the expansion joint belt.

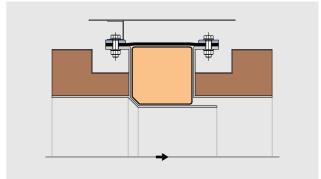




For very large movements, the insulation pillow is affixed laterally to the construction angles. In the event of movement, the pillow is compressed, and returns to its original shape when the system cools. Thus, the insulation will performs its function when the temperature begins to rise again.

In the temperature range between 150 °C and 200 °C, the thickness of the pre-insulation layer must be planned very carefully, since there is a risk that the temperature will drop below the dew point in the pre-insulation layer and that condensate will form.

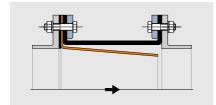


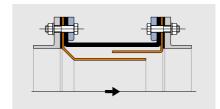


External insulation

If there is a risk of falling below the dew point and for medium temperatures of up to 220 °C, we recommend insulating the expansion joints from outside. Otherwise condensate may form and corrode the duct or lead to leaks in the expansion joint connection area.

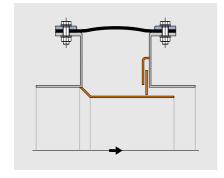
For temperatures over 220 °C, the expansion joint may in no event be insulated from the outside, since the expansion joint's convection would otherwise no longer be assured. The external insulation should then simply be applied up to the construction angle. In order to reduce the temperature up to the expansion joint in any case, at least 1/3 of the construction angle height remains uninsulated. A rear-ventilated system installed externally to protect against accidental contact allows for the expansion joint's thermal radiation, and protects it against both adverse weather effects and mechanical damage.

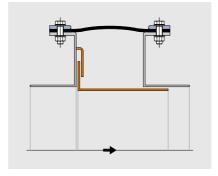


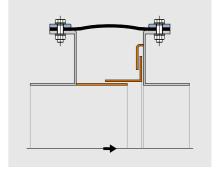

Flow liners

Flow liners should be used if the flow rate is greater than 30 m/s or if there are solids present in the medium. Flow liners are also used if the expansion joint has been installed immediately after a change in the direction of the

duct. For horizontal ducts and vertical ducts with a media flow from the top down, the flow liners are installed in the direction of flow.

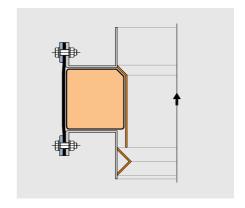




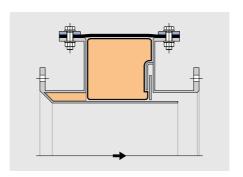


For expansion joints with construction angles, the flow liners are usually welded on. In some cases, the expansion joint will need to be designed with an installation seam. In order to protect the pre-insulation layer from dust accumulation in expansion joints with construction

angles, a swimming flow liner or sliding plate has proven to be of value when guided on one side with a retaining plate on the construction angle, such that it permits duct movements in all directions.



In the event of media flow from the bottom up in vertical or inclined lines, they are installed against the media flow. A bend is welded to the inside of the duct before the open end of the flow liner, which will then conduct the medium past the flow liner opening. Deposits of solid matter between the expansion joint and flow liner are thus avoided.


Fixing elements

Flange expansion joints are fixed using backing flanges on the duct flange. For belt expansion joints installed directly onto the line, clamps are used. If a duct angle is necessary, the expansion joints are pressed onto the angle flange using clamp bars. In order to keep the pressure

of the backing flange or clamp bar constant when the system is at high temperature, disc spring packets can be used. If needed, we can deliver all necessary fixing elements as accessories.

Expansion joint installation units

Expansion joint installation units are pre-fabricated installation sets that make installation much easier. Expansion joints, pre-insulation layers and steel parts are fully pre-mounted and can simply be screwed or welded into the duct. In the event of system modifications, the installation unit can be removed and overhauled at our factory.

Installation

Flange expansion joints are usually supplied without an installation seam. Belt expansion joints are manufactured more often as an open belt, especially for very large dimensions, and if flow liners are welded on or if duct lining is present. In order to compensate for assembly tolerances, these expansion joints are usually only punched on one side at the factory.

Our optimally equipped installation team will provide complete installation services for new construction or retrofitting activities; we can also appoint a field supervisor to train your workers and to support and monitor installation activities.

Installation set

Our installation set contains all the tools and aids needed to close fabric expansion joints, including a PTFE welding tool. You can use it to weld a gas-tight sealing layer using PTFE film. With reference to our detailed assembly instructions that specially cover the closure of individual fabric layers, sealing films and external layers, any trained assembler will be able to close fabric expansion joints independently at the installation site.

The scope of delivery for expansion joints with installation seams includes the tools needed to close the expansion joint, such as sewing needles, thread and glue. If the installation set with PTFE welding tools is not ordered, the PTFE film is made endless by clinching.

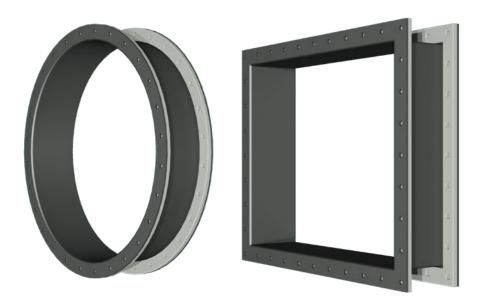
We will be happy to train your staff in the installation and closure of our expansion joints at our factory.

Fabric expansion joint unit for large axial movements ready to install after ash cyclone. Operating temperatur 550 $^{\circ}\text{C}$

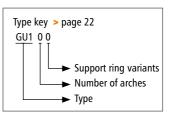
Flange expansion joints

Ducting Expansion Joints

GU100 Flange expansion joint without arch


> 366

GU110


Flange expansion joint with one or several arch(es)

> 368

GU100

> Type GU100

Flange expansion joint without arch

Design: Straight or conical elastomer or multilayer expansion joint

with self-sealing flanges and single or multi-part backing

flanges

Installation method: Fixes to flange at duct level

Dimensions: For round, rectangular and oval duct cross sections

Installation length: According to customer specification

Media temperature: Suitable for up to 400 °C

Pressure: Up to ± 0.25 bar

Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. 0.20 x installation length axial extension = approx. 0.20 x installation length lateral displacement = approx. 0.15 x installation length In the event of axial extension and simultaneous lateral

displacement, movements are reduced

For large lateral movements, we recommend presetting the

duct against the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in the exhaust pipes, in ventilators, in air ducts, in the flue gas scrubber, in filter systems

Expansion joint variants

	Elastomer expansion joint	Multilayer expansion joint
Temperature:	up to 200°C	up to 400°C
Design:	Single-layer elastomer expansion joint fully joined with one or more fabric reinforcement inserts	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics
Material:	Rubber grades: up to 100 °C: EPDM, IIR, CSM, NBR up to 180 °C: FPM up to 200 °C: Silicon (Q) PTFE lining: Permanently embedded on the inside at the rubber bellows in order to withstand corrosive chemical attack, available starting at Ø 300 mm Inserts: Polyamid, polyester, aramide, glass fibre, and steel mesh	Internal layers: PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric Sealing films: PTFE film, stainless steel film External layer: Silicon coated glass fibre fabric PTFE-glass fibre fabric laminate

Flanges

Design: Single- or multi-part backing flanges with clearance holes

Flange norms: According to customer specification

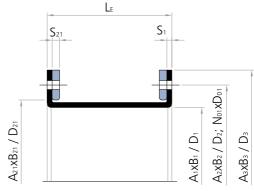
Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Flow liners

Design: Cylindrical, conical or telescoping flow liner (> page 360)

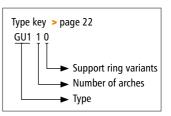
Materials: Carbon steel, stainless steel


Coating: Primed, hot-dip galvanised, special paint

Optional accessories

Fixing: Screws

Nuts Washers Disc springs


Cross section GU100

GU110

> Type GU110

Flange expansion joint with one or more arches

Design: Single or multi-arch elastomer or multilayer expansion joint

with self-sealing flanges and single or multi-part backing

flanges

Optional external pressure support rings in the arch trough

Optional vacuum support rings

Installation method: Fixes to flange at duct level

Dimensions: For round, rectangular and oval duct cross sections

Installation length: According to customer specification

Media temperature: Suitable for up to 400 °C

Pressure: Up to ± 0.25 bar

Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. $0.25 \times installation length$ axial stretching = approx. $0.25 \times installation length$ lateral displacement = approx. $0.20 \times installation length$ In the event of axial extension and simultaneous lateral

displacement, movements are reduced

For large lateral movements, we recommend presetting the

duct against the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in the exhaust pipes, in ventilataors, in air ducts, in the flue gas scrubber, in filter systems

Expansion joint variants

	Elastomer expansion joint	Multilayer expansion joint
Temperature:	up to 200°C	up to 400°C
Design:	Single-layer elastomer expansion joint fully joined with one or more fabric reinforcement inserts	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics
Material:	Rubber grades: up to 100 °C: EPDM, IIR, CSM, NBR up to 180 °C: FPM up to 200 °C: Silicon (Q) PTFE lining: Permanently embedded on the inside at the rubber bellows in order to withstand corrosive chemical attack, available starting at Ø 300 mm Inserts: Polyamid, polyester, aramide, glass fibre, and steel mesh	Internal layers: PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric Sealing films: PTFE film, stainless steel film External layer: Silicon coated glass fibre fabric PTFE glass fibre fabric laminate

Flanges

Design: Single- or multi-part backing flanges with clearance holes

Flange norms: According to customer specification

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

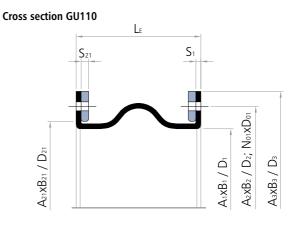
Flow liners

Design: Cylindrical, conical or telescoping flow liner (> page 360)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Optional accessories

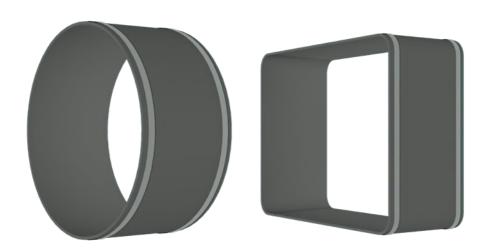

Fixing: Screws

Nuts Washers Disc springs

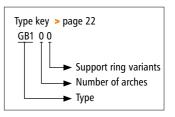
Support rings: Vacuum rings inside in the arch apex

and/or external support rings in the

arch trough



Belt expansion joints


Ducting Expansion Joints

GB100

> Type GB100

Belt expansion joint without arch

Design: Straight or conical elastomer or multilayer expansion joint

with sleeves for clamped fixing, ideally only for round or

oval duct cross sections

Optional expansion joint with installation seam

Installation method: Clamped fixing at duct level

Dimensions: For round and oval duct cross sections of up to approx.

Ø 1,500 mm

Installation length: = Installation gap + 2x fixing width

Individually according to customer specifications

Fixing width: Depends on pressure, diameter and clamp

design at least 40 mm

Media temperature: Suitable for up to 400 °C

Pressure: Up to ± 0.25 bar

Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. 0.20 x installation gap axial extension = approx. 0.20 x installation gap lateral displacement = approx. 0.15 x installation gap In the event of axial extension and simultaneous lateral

displacement, movements are reduced

In the event of axial extension or vacuum, the expansion

joint can be pulled from the pipeline

(provide groove at end of pipeline if needed)

For large lateral movements, we recommend presetting the

duct against the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in exhaust pipes, in ventilators, in air ducts, in ash lines, in filter systems

Expansion joint variants

	Elastomer expansion joint	Multilayer expansion joint
Temperature:	up to 200°C	up to 400 °C
Design:	Single-layer elastomer expansion joint fully joined with one or more fabric reinforcement inserts	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics.
Material:	Rubber grades: up to 100 °C: EPDM, IIR, CSM, NBR up to 180 °C: FPM up to 200 °C: Silicon (Q) PTFE lining: Permanently embedded on the inside at the rubber bellows in order to withstand corrosive chemical attack, available starting at Ø 300 mm Inserts: Polyamid, polyester, aramide, glass fibre, and steel mesh	Internal layers: PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric Sealing films: PTFE film, stainless steel film External layer: Silicon coated glass fibre fabric PTFE-glass fibre fabric laminate

Fastening clamps

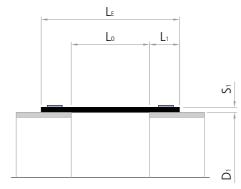
Design: Depending on pressure and diameter, endless clamp belt or hinge bolt clamps

At higher pressures, 2 parallel clamps per side

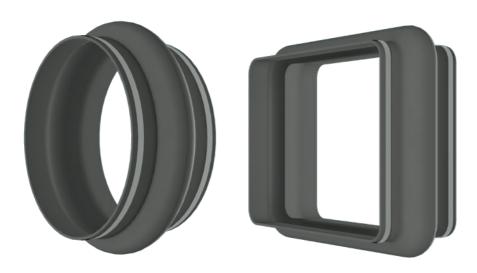
Width: Endless clamp belt: 3/4"

Hinge bolt clamp: depending on Ø: 18–30 mm

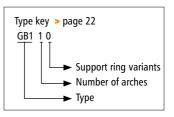
Materials: Endless clamp belt with screw lugs (tongs): 1.7300


Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Optional accessories


Installation set: Tools and aids for punching and closing

the expansion joint seam


Cross section GB100

GB110

> Type GB110

Belt expansion joint with one or more arches

Design: Cylindrical, single or multi-arch elastomer or multilayer

expansion joint with sleeves for clamped fixing, ideally

only for round or oval duct cross sections

Optional expansion joint with installation seam

Optional external pressure support rings in the arch trough

Optional vacuum support rings

Installation method: Clamped fixing at duct level

Dimensions: For round and oval duct cross sections of up to

approx. Ø 1,500 mm

Installation length: = Installation gap + 2x fixing width

Individually according to customer specifications

Fixing width: Depends on pressure, diameter and clamp design at least

40 mm

Media temperature: Suitable for up to 400 °C

Pressure: Up to ± 0.25 bar. Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. 0.25 x installation gap axial extension = approx. 0.25 x installation gap lateral displacement = approx. 0.20 x installation gap

In the event of axial extension and simultaneous lateral displacement,

movements are reduced

In the event of axial extension or vacuum, the expansion joint can be pulled

from the pipeline (provide groove at end of pipeline if needed) For large lateral movements, we recommend presetting the duct

against the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in exhaust pipes, in ventilators, in air ducts, in ash lines, in filter systems

Expansion joint variants

	Elastomer expansion joint	Multilayer expansion joint
Temperature:	up to 200°C	up to 400°C
Design:	Single-layer elastomer expansion joint fully joined with one or more fabric reinforcement inserts	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics.
Material:	Rubber grades: up to 100 °C: EPDM, IIR, CSM, NBR up to 180 °C: FPM up to 200 °C: Silicon (Q) PTFE lining: Permanently embedded on the inside at the rubber bellows in order to withstand corrosive chemical attack, available starting at Ø 300 mm Inserts: Polyamid, polyester, aramide, glass fibre, and steel mesh	Internal layers: PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric Sealing films: PTFE film, stainless steel film External layer: Silicon coated glass fibre fabric PTFE-glass fibre fabric laminate

Fastening clamps

Design: Depending on pressure and diameter, endless clamp belt or hinge bolt clamps

At higher pressures, 2 parallel clamps per side

Width: Endless clamp belt: 3/4"

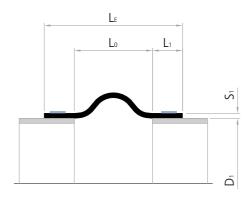
Hinge bolt clamp: depending on \emptyset : 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Optional accessories

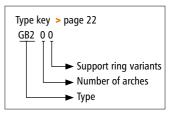
Support rings: Vacuum support rings inside in the arch


apex and/or external pressure support

rings in the arch trough

Installation set: Tools and aids for punching and closing

the expansion joint seam


Cross section GB110

GB200

> Type GB200

Belt expansion joint on duct angles without arch

Design: Straight or conical elastomer or multilayer expansion joint

with sleeves for clamp bar fixing

Optional expansion joint with installation seam

Installation method: Clamp bar fixing on duct angles

Dimensions: For round and rectangular duct cross sections

Installation length: = Installation gap + 2x fixing width

Individually according to customer specifications

Fixing width: Depends on pressure and diameter between

60 and 100 mm

Media temperature: Depending on the height of the duct angle, suitable for

up to 500°C

Pressure: Up to ± 0.25 bar

Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. 0.20 x installation length axial extension = approx. 0.20 x installation gap lateral displacement = approx. 0.15 x installation gap In the event of axial extension and simultaneous lateral

displacement, movements are reduced

For large lateral movements, we recommend presetting

the duct against the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in exhaust pipes, in ventilators, in air ducts, in ash lines, in filter systems

Expansion joint variants

	Elastomer expansion joint	Multilayer expansion joint
Temperature:	up to 200°C	up to 500°C
Design:	Single-layer elastomer expansion joint fully joined with one or more fabric reinforcement inserts	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics.
Material:	Rubber grades: up to 100 °C: EPDM, IIR, CSM, NBR up to 180 °C: FPM up to 200 °C: Silicon (Q) PTFE lining: Permanently embedded on the inside at the rubber bellows in order to withstand corrosive chemical attack, available starting at Ø 300 mm Inserts: Polyamid, polyester, aramide, glass fibre, and steel mesh	Internal layers: PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric Sealing films: PTFE film, stainless steel film External layer: Silicon coated glass fibre fabric PTFE-glass fibre fabric laminate

Clamp bar

Design: Multi-part clamp bar with slotted holes

Materials: Carbon steel, stainless steel

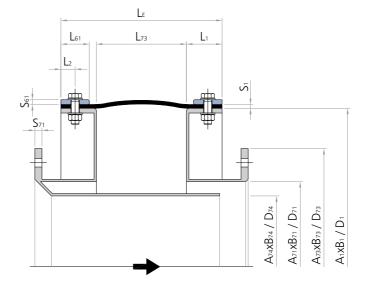
Coating: Primed, hot-dip galvanised, special paint

Optional accessories

Fixing: Screws, nuts, washers,

disc springs

Installation unit: Installation-ready installation

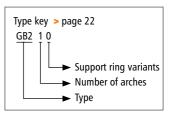

unit complete with premounted expansion joint, flow liner and connecting ends for welding or screwing into the duct (> page 361)

Installation set: Tools and aids for punching

and closing the expansion

joint seam

Cross section GB200



GB210

> Type GB210

Belt expansion joint on duct angles with one or more arches

Design: Cylindrical, single or multi-arch elastomer or multilayer

expansion joint with sleeve for clamp bar fixing Optional expansion joint with installation seam Optional external pressure support rings in the arch

trough

Optional vacuum support rings

Installation method: Clamp bar fixing on duct angles

Dimensions: For round and rectangular duct cross sections

Installation length: = Installation gap + 2x fixing width

Individually according to customer specifications

Fixing width: Depends on pressure and diameter between

60 and 100 mm

Media temperature: Depending on the height of the duct angle, suitable for

up to $500\,^{\circ}\text{C}$

Pressure: Up to ± 0.25 bar

Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. 0.25 x installation gap axial extension = approx. 0.25 x installation gap lateral displacement = approx. 0.20 x installation gap In the event of axial extension and simultaneous lateral

displacement, movements are reduced

For large lateral movements, we recommend presetting

the duct against the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in exhaust pipes, in ventilators, in air ducts, in ash lines, in filter systems

Expansion joint variants

	Elastomer expansion joint	Multilayer expansion joint
Temperature:	up to 200°C	up to 500°C
Design:	Single-layer elastomer expansion joint fully joined with one or more fabric reinforcement inserts	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics.
Material:	Rubber grades: up to 100°C: EPDM, IIR, CSM, NBR up to 180°C: FPM up to 200°C: Silicon (Q) PTFE lining: Permanently embedded on the inside at the rubber bellows in order to withstand corrosive chemical attack, available starting at Ø 300 mm Inserts: Polyamid, polyester, aramide, glass fibre, and steel mesh	Internal layers: PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric Sealing films: PTFE film, stainless steel film External layer: Silicon coated glass fibre fabric PTFE-glass fibre fabric laminate

Clamp bar

Design: Multi-part clamp bar with slotted holes

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Optional accessories

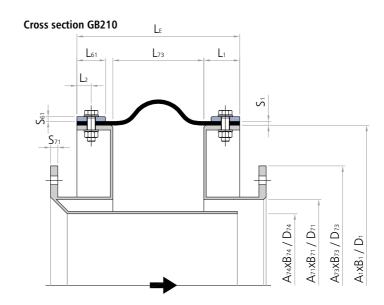
Fixing: Screws, nuts, washers,

disc springs

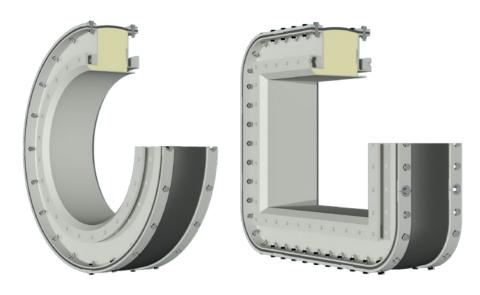
Support ring: Vacuum rings inside in the

arch apex and/or external support rings in the arch

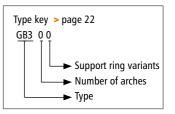
trough


Installation unit: Installation-ready installation

unit complete with premounted expansion joint, flow liner and connecting ends for welding or screwing into the duct (> page 361)


Installation set: Tools and aids for punching

and closing the expansion


joint seam

GB300

> Type GB300

Belt expansion joint on duct angles with pre-insulation, without arch

Design: Straight or conical elastomer or multilayer expansion joint

with sleeve for clamp bar fixing

Optional expansion joint with installation seam

Installation method: Clamp bar fixing on duct angles

Dimensions: For round and rectangular duct cross sections

Installation length: = Installation gap + 2x fixing width

Individually according to customer specifications

Fixing width: Depends on pressure and diameter between

60 and 100 mm

Media temperature: Depending on the height of the duct angle and duct

lining, suitable for up to 1200°C

Pressure: Up to ± 0.25 bar

Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. 0.20 x installation gap axial extension = approx. 0.20 x installation gap lateral displacement = approx. 0.15 x installation gap In the event of axial extension and simultaneous lateral

displacement, movements are reduced

For large lateral movements, we recommend presetting

the duct against the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in exhaust pipes, in ventilators, in air ducts, in ash lines, in filter systems

Expansion joints

	Multilayer expansion joint
Temperature:	Depending on the duct angle height and lining, up to 1200 °C
Design:	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics.
Material:	Internal layers: PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric
	Sealing films: PTFE film, stainless steel film
	External layer: Silicon coated glass fibre fabric, PTFE-glass fibre fabric laminate

Pre-insulation

Design: Insulation layers, cut to the installation gap, consisting of heat-resistant wire mesh

Insulation layers made from glass, ceramic, silicate or mineral wool Optional installation-ready, fabric-sheathed insulation pillow Duct lining necessary for high medium temperatures

Clamp bar

Design: Multi-part clamp bar with slotted holes

Materials: Carbon steel, stainless steel

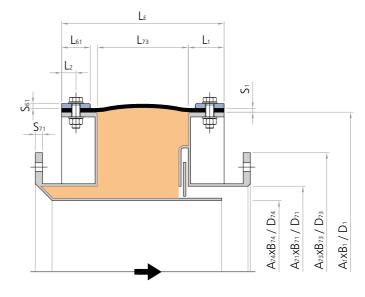
Coating: Primed, hot-dip galvanised, special paint

Optional accessories

Fixing: Screws, nuts, washers,

disc springs

Installation unit: Installation-ready installation

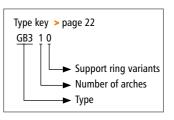

unit complete with premounted expansion joint, flow liner and connecting ends for welding or screwing into the duct (> page 361)

Installation set: Tools and aids for punching

and closing the expansion

joint seam

Cross section GB300



GB310

> Type GB310

Belt expansion joint on duct angles with pre-insulation, with one or more arches

Design: Cylindrical, single or multi-arch elastomer or multilayer

expansion joint with sleeve for clamp bar fixing Optional expansion joint with installation seam

Optional external pressure support rings in the arch trough

Optional vacuum support rings

Installation method: Clamp bar fixing on duct angles

Dimensions: For round and rectangular duct cross sections

Installation length: = Installation gap + 2x fixing width

Individually according to customer specifications

Fixing width: Depends on pressure and diameter between

60 and 100 mm

Media temperature: Depending on the height of the duct angle and duct

lining, suitable for up to 1200°C

Pressure: Up to ± 0.25 bar

Higher pressures on request

Movement: For axial, lateral and angular movements

Benchmarks:

axial compression = approx. 0.25 x installation gap axial extension = approx. 0.25 x installation gap lateral displacement = approx. 0.20 x installation gap In the event of axial extension and simultaneous lateral displacement, movements are reduced. For large lateral movements, we recommend presetting the duct against

the direction of movement

Application:

Power plants, waste incineration plants, gas turbines, cement factories, paper industry, steel industry e.g. in exhaust pipes, in ventilators, in air ducts, in ash lines, in filter systems

Expansion joints

	Multilayer expansion joint
Temperature:	Depending on the duct angle height and lining, up to 1200 °C
Design:	Multilayer fabric expansion joint consisting of interior insulating layers, embedded sealing films and exterior pressure carrier fabrics
Material:	Internal layers PTFE glass fibre fabric laminate, glass fibre fabric, glass mat, silicate fabric Sealing films:
	PTFE film, stainless steel film External layer: Silicon coated glass fibre fabric, PTFE-glass fibre fabric laminate

Pre-insulation

Design: Insulation layers, cut to the installation gap, consisting of heat-resistant wire mesh

Insulation layers made from glass, ceramic, silicate or mineral wool Optional installation-ready, fabric-sheathed insulation pillow

Duct lining necessary for high medium temperatures

Clamp bar

Design: Multi-part clamp bar with slotted holes

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Optional accessories

Fixing: Screws, nuts, washers,

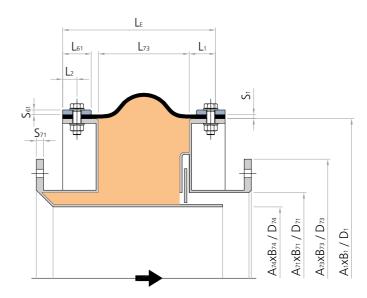
disc springs

Support rings: Vacuum rings inside in the

arch apex and/or external support rings in the arch

trough

Installation unit: Installation-ready installation


unit complete with premounted expansion joint, flow liner and connecting ends for welding or screwing into the duct (> page 361)

Installation set: Tools and aids for punching

and closing the expansion

joint seam

Cross section GB310

Multilayer expansion joint bellows, type GB300 as a seal between the grate and boiler in a waste incineration plant

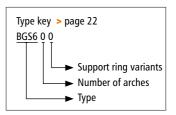
Multilayer expansion joint, type GB300 as a pre-fabricated installation unit for ash discharge in a power plant ot
otin 5,500 x 600 mm, 750 °C

Elastomer expansion joints, type GU110 in the chute between the screw conveyor and sludge container in a slurry incineration facility \boxtimes 400 x 400 mm, 60°C

Elastomer expansion joints, type GU100 on the scrubbing drums of a waste incineration plant \varnothing 2,400 mm, 80 °C

Expansion joints for smoke escape, ventilation and EX protection zones

Expansion Joints for Smoke Escape


-		BGS600	Smoke extraction fan expansion joint	> 388
		BGK611	Smoke extraction single arch ducting expansion joint	> 390
Expansion Joints for Ventilation and Air Conditioning Systems				
<u> </u>		LT200	Fan or ducting expansion joint	> 392
Expansion Joints with Explosion Protection				
ŧ	ł	EX100	Conductive fan or ducting expansion joint	> 394

BGS600

> Type BGS600

Smoke extraction fan expansion joint at 600 °C for 120 minutes

Straight or conical fabric expansion joints (silicon free) with Design:

self-sealing flanges

Single-part backing flange on both sides

600°C for 120 minutes Test temperature:

1,500 Pa at room temperature, 500 Pa at 600 °C Test vacuum:

Installation method: Fixes to flange at duct level

Dimensions: For round and rectangular duct cross sections

Installation length: 100 to 250 mm

Suitable for up to 120 °C long-term temperature Media temperature:

Pressure: Up to $\pm 15,000$ Pa at room temperature

For axial and lateral movements Movement:

> axial compression = 50 mm lateral displacement = 20 mm

Application: **Elastic connection** to axial or radial ventilators in automatic smoke escape systems to compensate for vibrations and for sound separation e.g. for smoke escape in

buildings and tunnels

Request assembly instructions at: www.ditec-adam.de/

Flanges

Design: Single-part backing flange with clearance holes

Flange norms: The usual norms for ventilation systems

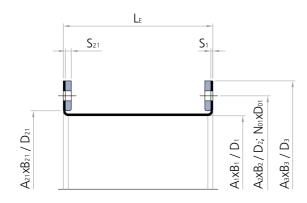
Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Flow liners

Design: Cylindrical, conical or telescoping flow liner (> page 360)

Materials: Carbon steel, stainless steel

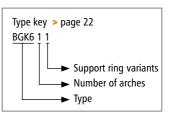

Coating: Primed, hot-dip galvanised, special paint

Optional accessories

Support rings: Vacuum ring made from

spring steel

Cross section BGS600



BGK611

> Type BGK611

Smoke extraction single arch ducting expansion joint at 600 °C for 120 minutes

Design: Single-arch fabric expansion joint (silicon-free) with self-

sealing flanges

Vacuum support ring made from spring steel wire inside at

the arch apex

Single-part backing flange on both sides with guide rods

Test temperature: 600°C for 120 minutes

1,500 Pa at room temperature, 500 Pa at 600 °C Test vacuum:

Installation method: Fixes to flange at duct level

Dimensions: For round and rectangular duct cross sections

Installation length:

Suitable for up to 120 °C long-term temperature Media temperature:

Pressure: Up to $\pm 15,000$ Pa at room temperature

Movement: For axial movements

axial compression = 100 mm

Application:

Expansion joints in ducts and on smoke escape flaps in automatic smoke escape systems to compensate for thermal growth in the event of fire e.g. for building and tunnel smoke escape

Request assembly instructions at:

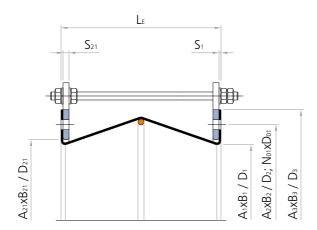
Flanges

Design: Single-part backing flange with clearance holes and guide bolts

Flange norms: According to customer specification

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

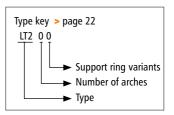

Flow liners

Design: Cylindrical, conical or telescoping flow liner (> page 360)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Cross section BGK611



LT200

> Type LT200

Fan or ducting expansion joint up to 200 °C

Design: Straight or conical fabric expansion joint made from silicon

with a aramide fibre fabric insert and self-sealing flanges

or sleeve for clamped fixing

Optional single-part backing flanges or clamps

Installation method: Fixing to flanges or using clamps at duct level

Dimensions: For round, rectangular and oval duct cross sections

Installation length: According to customer specification

Media temperature: Suitable from -60 to +200 °C, maximum 250 °C

Pressure: Up to $\pm 15,000$ Pa

For axial and lateral movements Movement:

Application:

Power plants, waste incineration plants, cement factories, paper industry e.g. on ventilators, in air conditioning and ventilation ducts

Request assembly instructions at: www.ditec-adam.de/

Flanges

Design: Single-part backing flange with clearance holes

Flange norms: According to customer specification

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Fastening clamps

Design: Depending on pressure and the diameter, endless clamp belt, screw thread belt, small clamps or

hinge bolt clamps. At higher pressures, 2 adjacent clamps per side.

Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on \emptyset : 9 – 12 mm Hinge bolt clamp: depending on \emptyset : 18 – 30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310

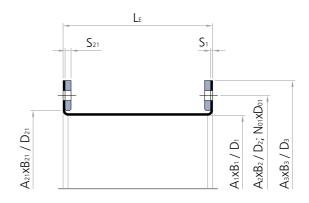
Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Flow liners

Design: Cylindrical, conical or telescoping flow liner (> page 360)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

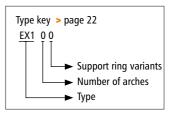

Optional accessories

Fixing: Screws

Nuts Washers

Disc springs

Cross section LT200



EX100

> Type EX100

Conductive fan or ducting expansion joint

Design: Straight or conical fabric expansion joint made from EPDM

rubber with a polyamide fabric insert and self-sealing flanges or sleeves for clamped fixing and proof electrical

conductivity

Optional single-part backing flanges or clamps

Conductivity: Surface resistance 1.4 x $10^5 \Omega$ electrical discharge

capability

Installation method: Fixing to flanges or using clamps at duct level

Earthing with min. 10 cm² contact surface required

Dimensions: For round, rectangular and oval duct cross sections

Installation length: According to customer specification **Media temperature:** Suitable between -30 to +100 °C

Pressure: Up to $\pm 15,000$ Pa

Movement: For axial and lateral movements

Application:

Pharmaceutical industry, food processing, petrochemical and refining technology, varnish industry, e.g. on ventilators, in air conditioning and ventilation ducts, in suction units

Flanges

Design: Single-part backing flange with clearance holes

Flange norms: According to customer specification

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint

Fastening clamps

Design: Depending on pressure and the diameter, endless clamp belt, screw thread belt, small clamps or

hinge bolt clamps. At higher pressures, 2 adjacent clamps per side.

Width: Endless clamp belt: 3/4"

Screw thread belt: 1/2"

Small clamp: depending on Ø: 9–12 mm Hinge bolt clamp: depending on Ø: 18–30 mm

Materials: Endless clamp belt with screw lugs (tongs): 1.7300

Screw thread belt with threaded screw lugs: 1.4310

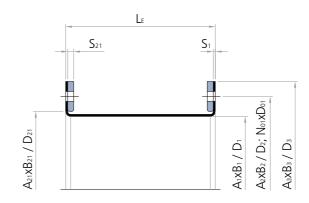
Small clamp, belt and housing: 1.4016 (Screw steel galvanised)
Hinge bolt clamp, belt and housing: 1.4016 (Screw steel galvanised)

Flow liners

Design: Cylindrical, conical or telescoping flow liner (> page 360)

Materials: Carbon steel, stainless steel

Coating: Primed, hot-dip galvanised, special paint


Optional accessories

Fixing: Screws

Nuts

Washers
Disc springs

Cross section EX100

Elastomer expansion joint, type GU100 on the vacuum and pressure side of a ventilator in a slurry incineration facility Ø 500 mm, 180°C

Fabric expansion joint, type EX100 in a solvent extraction facility

New fabric expansion joint installation unit at the ash outlet of a power plant

Belt expansion joint type GB300 on duct angles with pre-insulation

© 2024 by ditec Dichtungstechnik GmbH

An der Staustufe 6

D 97318 Kitzingen | Germany phone +49 9321 2307-0 fax +49 9321 2307-28 www.ditec-adam.de info@ditec-adam.de

Registrar of Companies: Würzburg No. 612

Edition: November 2024

DTP: JUNG Werbeagentur

www.jung.agency

Reproduction, translation, digitising and duplication by permission only, including excerpts.

All rights reserved.

All the information in the text and illustrations of this catalogue has been compiled with great care.

We are not liable for errors, incompleteness or modifications resulting from future technical developments.

ditec Dichtungstechnik GmbH

An der Staustufe 6 97318 Kitzingen | Germany

phone: +49 9321 2307 0 fax: +49 9321 2307 28

info@ditec-adam.de www.ditec-adam.de